The agricultural sector remains one of the most hazardous working environments, with viticulture posing particularly high risks due to repetitive manual tasks, pesticide exposure, and machinery operation. This study explores the potential of vision-based Artificial Intelligence (AI) systems to enhance occupational health and safety by evaluating their coherence with human expert assessments. A dataset of 203 annotated images, collected from 50 vineyards in Northern Italy, was analyzed across three domains: manual work activities, workplace environments, and agricultural machinery. Each image was independently assessed by safety professionals and an AI pipeline integrating convolutional neural networks, regulatory contextualization, and risk matrix evaluation. Agreement between AI and experts was quantified using weighted Cohen's Kappa, achieving values of 0.94-0.96, with overall classification error rates below 14%. Errors were primarily false negatives in machinery images, reflecting visual complexity and operational variability. Statistical analyses, including McNemar and Wilcoxon signed-rank tests, revealed no significant differences between AI and expert classifications. These findings suggest that AI can provide reliable, standardized risk detection while highlighting limitations such as reduced sensitivity in complex scenarios and the need for explainable models. Overall, integrating AI with complementary sensors and regulatory frameworks offers a credible path toward proactive, transparent, and preventive safety management in viticulture and potentially other high-risk agricultural sectors. Furthermore, vision-based AI systems inherently act as optical sensors capable of capturing and interpreting occupational risk conditions. Their integration with complementary sensor technologies-such as inertial, environmental, and proximity sensors-can enhance the precision and contextual awareness of automated safety assessments in viticulture.

Preliminary Study of Vision-Based Artificial Intelligence Application to Evaluate Occupational Risks in Viticulture

Cividino S. R. S.;Cappelli A.;Zaninelli M.
2025-01-01

Abstract

The agricultural sector remains one of the most hazardous working environments, with viticulture posing particularly high risks due to repetitive manual tasks, pesticide exposure, and machinery operation. This study explores the potential of vision-based Artificial Intelligence (AI) systems to enhance occupational health and safety by evaluating their coherence with human expert assessments. A dataset of 203 annotated images, collected from 50 vineyards in Northern Italy, was analyzed across three domains: manual work activities, workplace environments, and agricultural machinery. Each image was independently assessed by safety professionals and an AI pipeline integrating convolutional neural networks, regulatory contextualization, and risk matrix evaluation. Agreement between AI and experts was quantified using weighted Cohen's Kappa, achieving values of 0.94-0.96, with overall classification error rates below 14%. Errors were primarily false negatives in machinery images, reflecting visual complexity and operational variability. Statistical analyses, including McNemar and Wilcoxon signed-rank tests, revealed no significant differences between AI and expert classifications. These findings suggest that AI can provide reliable, standardized risk detection while highlighting limitations such as reduced sensitivity in complex scenarios and the need for explainable models. Overall, integrating AI with complementary sensors and regulatory frameworks offers a credible path toward proactive, transparent, and preventive safety management in viticulture and potentially other high-risk agricultural sectors. Furthermore, vision-based AI systems inherently act as optical sensors capable of capturing and interpreting occupational risk conditions. Their integration with complementary sensor technologies-such as inertial, environmental, and proximity sensors-can enhance the precision and contextual awareness of automated safety assessments in viticulture.
2025
agricultural machinery
artificial intelligence
computer vision
ergonomics
explainable AI
occupational health and safety
risk assessment
viticulture
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/31835
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact