This study aimed to explore innovative process technologies for producing milk liqueurs with balanced and stable formulations. Milk liqueurs are known to pose significant technological challenges due to phase separation, which compromises product stability and reduces shelf-life. Interactions between milk proteins, alcohol, carbohydrates, temperature, and ionic strength play a crucial role in such destabilization. Pectin, known for its stabilizing effect, can mitigate phase separation, enhancing both shelf-life and sensory quality. This research focused on developing stable formulations of liqueur milk based on fresh buffalo milk by incorporating the pectin extracted from lemon peels. Rheological properties, particularly viscosity, were assessed in formulations containing varying percentages of pectin. The most stable formulation was identified as the one containing 0.10% pectin. Accelerated shelf-life testing, modelled using the Arrhenius equation, predicted a shelf-life of 15 months at 25 °C under standard lighting. The findings demonstrate that lemon peel-derived pectin, obtained from agri-food waste, sustainably improves product stability. Further studies are needed to characterize the pectin structure and optimize extraction methods for industrial-scale applications.

Effect of Pectin Extracted from Lemon Peels on the Stability of Buffalo Milk Liqueurs

Salvatore Velotto;GIANLUCA TRIPODI
;
2025-01-01

Abstract

This study aimed to explore innovative process technologies for producing milk liqueurs with balanced and stable formulations. Milk liqueurs are known to pose significant technological challenges due to phase separation, which compromises product stability and reduces shelf-life. Interactions between milk proteins, alcohol, carbohydrates, temperature, and ionic strength play a crucial role in such destabilization. Pectin, known for its stabilizing effect, can mitigate phase separation, enhancing both shelf-life and sensory quality. This research focused on developing stable formulations of liqueur milk based on fresh buffalo milk by incorporating the pectin extracted from lemon peels. Rheological properties, particularly viscosity, were assessed in formulations containing varying percentages of pectin. The most stable formulation was identified as the one containing 0.10% pectin. Accelerated shelf-life testing, modelled using the Arrhenius equation, predicted a shelf-life of 15 months at 25 °C under standard lighting. The findings demonstrate that lemon peel-derived pectin, obtained from agri-food waste, sustainably improves product stability. Further studies are needed to characterize the pectin structure and optimize extraction methods for industrial-scale applications.
2025
lemon peel
buffalo milk
liqueur cream
pectin
rheological analysis
sensory analysis
shelf-life
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/28966
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact