Because large brains are energetically expensive, they are associated with metabolic traits that facilitate energy availability across vertebrates. However, the biological underpinnings driving these traits are not known. Given its role in regulating host metabolism in disease studies, we hypothesized that the gut microbiome contributes to variation in normal cross-vertebrate species differences in metabolism, including those associated with the brain’s energetic requirements. By inoculating germfree mice with the gut microbiota (GM) of three primate species – two with relatively larger brains and one with a smaller brain – we demonstrated that the GM of larger-brained primates shifts host metabolism towards energy use and production, while that of smaller-brained primates stimulates energy storage in adipose tissues. Our findings establish a causal role of the GM in normal cross-host species differences in metabolism associated with relative brain size and suggest that the GM may have been an important facilitator of metabolic changes during human evolution that supported encephalization.

The primate gut microbiota contributes to interspecific differences in host metabolism

Sardaro, Maria Luisa Savo;
2024-01-01

Abstract

Because large brains are energetically expensive, they are associated with metabolic traits that facilitate energy availability across vertebrates. However, the biological underpinnings driving these traits are not known. Given its role in regulating host metabolism in disease studies, we hypothesized that the gut microbiome contributes to variation in normal cross-vertebrate species differences in metabolism, including those associated with the brain’s energetic requirements. By inoculating germfree mice with the gut microbiota (GM) of three primate species – two with relatively larger brains and one with a smaller brain – we demonstrated that the GM of larger-brained primates shifts host metabolism towards energy use and production, while that of smaller-brained primates stimulates energy storage in adipose tissues. Our findings establish a causal role of the GM in normal cross-host species differences in metabolism associated with relative brain size and suggest that the GM may have been an important facilitator of metabolic changes during human evolution that supported encephalization.
2024
encephalization
gluconeogenesis
life history
physiology
short-chain fatty acids (SCFAs)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/26426
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact