Migraine is an exclusively human chronic disorder with ictal manifestations characterized by a multifaceted clinical complexity pointing to a cerebral cortical involvement. The present review is aimed to cover the clinical, neuroimaging, and neurophysiological literature on the role of the cerebral cortex in migraine pathophysiology. Converging clinical scenarios, advanced neuroimaging data, and experimental neurophysiological findings, indicate that fluctuating excitability, plasticity, and metabolism of cortical neurons represent the pathophysiological substrate of the migraine cycle. Abnormal cortical responsivity and sensory processing coupled to a mismatch between the brain's energy reserve and workload may ignite the trigeminovascular system, leading to the migraine attack through the activation of subcortical brain trigeminal and extra-trigeminal structures, and driving its propagation and maintenance. The brain cortex emerges as the crucial player in migraine, a disorder lying at the intersection between neuroscience and daily life. Migraine disorder stems from an imbalance in inhibitory/excitatory cortical circuits, responsible for functional changes in the activity of different cortical brain regions encompassing the neurolimbic-pain network, and secondarily allowing a demodulation of subcortical areas, such as hypothalamus, amygdala, and brainstem nuclei, in a continuous mutual crosstalk

Migraine as a Cortical Brain Disorder

Barbanti P;
2019-01-01

Abstract

Migraine is an exclusively human chronic disorder with ictal manifestations characterized by a multifaceted clinical complexity pointing to a cerebral cortical involvement. The present review is aimed to cover the clinical, neuroimaging, and neurophysiological literature on the role of the cerebral cortex in migraine pathophysiology. Converging clinical scenarios, advanced neuroimaging data, and experimental neurophysiological findings, indicate that fluctuating excitability, plasticity, and metabolism of cortical neurons represent the pathophysiological substrate of the migraine cycle. Abnormal cortical responsivity and sensory processing coupled to a mismatch between the brain's energy reserve and workload may ignite the trigeminovascular system, leading to the migraine attack through the activation of subcortical brain trigeminal and extra-trigeminal structures, and driving its propagation and maintenance. The brain cortex emerges as the crucial player in migraine, a disorder lying at the intersection between neuroscience and daily life. Migraine disorder stems from an imbalance in inhibitory/excitatory cortical circuits, responsible for functional changes in the activity of different cortical brain regions encompassing the neurolimbic-pain network, and secondarily allowing a demodulation of subcortical areas, such as hypothalamus, amygdala, and brainstem nuclei, in a continuous mutual crosstalk
2019
cerebral cortex; migraine; neuroimaging; neurophysiology; pathophysiology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/8159
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 23
social impact