Results in studies concerning cortical changes in idiopathic sudden sensorineural hearing loss (ISSNHL) are not homogeneous, in particular due to the different neuroimaging techniques implemented and the diverse stages of ISSNHL studied. Considering the recent advances in state-of-the-art positron emission tomography (PET) cameras, the aim of this study was to gain more insight into the neuroanatomical differences associated with the earliest stages of unilateral ISSNHL and clinical-perceptual performance changes. After an audiological examination including the mean auditory threshold (mean AT), mean speech discrimination score (mean SDS) and Tinnitus Handicap Inventory (THI), 14 right-handed ISSNHL patients underwent brain [18F]fluorodeoxyglucose (FDG)-PET within 72 h of the onset of symptoms. When compared to an homogeneous group of 35 healthy subjects by means of statistical parametric mapping, a relative increase in FDG uptake was found in the right superior and medial frontal gyrus as well as in the right anterior cingulate cortex in ISSNHL patients. Conversely, the same group showed a significant relative decrease in FDG uptake in the right middle temporal, precentral and postcentral gyrus as well as in the left posterior cingulate cortex, left lingual, superior, middle temporal and middle frontal gyrus and in the left insula. Regression analysis showed a positive correlation between mean THI and glucose consumption in the right anterior cingulate cortex and a positive correlation between mean SDS and glucose consumption in the left precentral gyrus. The relative changes in FDG uptake found in these brain regions and the positive correlation with mean SDS and THI scores in ISSNHL could possibly highlight new aspects of cerebral rearrangement, contributing to further explain changes in those functions that support speech recognition during the sudden impairment of unilateral auditory input.
Early cortical metabolic rearrangement related to clinical data in idiopathic sudden sensorineural hearing loss
Danieli, Roberta;
2017-01-01
Abstract
Results in studies concerning cortical changes in idiopathic sudden sensorineural hearing loss (ISSNHL) are not homogeneous, in particular due to the different neuroimaging techniques implemented and the diverse stages of ISSNHL studied. Considering the recent advances in state-of-the-art positron emission tomography (PET) cameras, the aim of this study was to gain more insight into the neuroanatomical differences associated with the earliest stages of unilateral ISSNHL and clinical-perceptual performance changes. After an audiological examination including the mean auditory threshold (mean AT), mean speech discrimination score (mean SDS) and Tinnitus Handicap Inventory (THI), 14 right-handed ISSNHL patients underwent brain [18F]fluorodeoxyglucose (FDG)-PET within 72 h of the onset of symptoms. When compared to an homogeneous group of 35 healthy subjects by means of statistical parametric mapping, a relative increase in FDG uptake was found in the right superior and medial frontal gyrus as well as in the right anterior cingulate cortex in ISSNHL patients. Conversely, the same group showed a significant relative decrease in FDG uptake in the right middle temporal, precentral and postcentral gyrus as well as in the left posterior cingulate cortex, left lingual, superior, middle temporal and middle frontal gyrus and in the left insula. Regression analysis showed a positive correlation between mean THI and glucose consumption in the right anterior cingulate cortex and a positive correlation between mean SDS and glucose consumption in the left precentral gyrus. The relative changes in FDG uptake found in these brain regions and the positive correlation with mean SDS and THI scores in ISSNHL could possibly highlight new aspects of cerebral rearrangement, contributing to further explain changes in those functions that support speech recognition during the sudden impairment of unilateral auditory input.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.