The comet assay is a well-accepted biomonitoring tool to examine the effect of dietary, lifestyle, environmental and occupational exposure on levels of DNA damage in human cells. With such a wide range of determinants for DNA damage levels, it becomes challenging to deal with confounding and certain factors are inter-related (e.g. poor nutritional intake may correlate with smoking status). This review describes the effect of intrinsic (i.e. sex, age, tobacco smoking, occupational exposure and obesity) and extrinsic (season, environmental exposures, diet, physical activity and alcohol consumption) factors on the level of DNA damage measured by the standard or enzyme-modified comet assay. Although each factor influences at least one comet assay endpoint, the collective evidence does not indicate single factors have a large impact. Thus, controlling for confounding may be necessary in a biomonitoring study, but none of the factors is strong enough to be regarded a priori as a confounder. Controlling for confounding in the comet assay requires a case-by-case approach. Inter-laboratory variation in levels of DNA damage and to some extent also reproducibility in biomonitoring studies are issues that have haunted the users of the comet assay for years. Procedures to collect specimens, and their storage, are not standardized. Likewise, statistical issues related to both sample-size calculation (before sampling of specimens) and statistical analysis of the results vary between studies. This review gives guidance to statistical analysis of the typically complex exposure, co-variate, and effect relationships in human biomonitoring studies.

Application of the comet assay in human biomonitoring: An hCOMET perspective

Bonassi, Stefano;
2020-01-01

Abstract

The comet assay is a well-accepted biomonitoring tool to examine the effect of dietary, lifestyle, environmental and occupational exposure on levels of DNA damage in human cells. With such a wide range of determinants for DNA damage levels, it becomes challenging to deal with confounding and certain factors are inter-related (e.g. poor nutritional intake may correlate with smoking status). This review describes the effect of intrinsic (i.e. sex, age, tobacco smoking, occupational exposure and obesity) and extrinsic (season, environmental exposures, diet, physical activity and alcohol consumption) factors on the level of DNA damage measured by the standard or enzyme-modified comet assay. Although each factor influences at least one comet assay endpoint, the collective evidence does not indicate single factors have a large impact. Thus, controlling for confounding may be necessary in a biomonitoring study, but none of the factors is strong enough to be regarded a priori as a confounder. Controlling for confounding in the comet assay requires a case-by-case approach. Inter-laboratory variation in levels of DNA damage and to some extent also reproducibility in biomonitoring studies are issues that have haunted the users of the comet assay for years. Procedures to collect specimens, and their storage, are not standardized. Likewise, statistical issues related to both sample-size calculation (before sampling of specimens) and statistical analysis of the results vary between studies. This review gives guidance to statistical analysis of the typically complex exposure, co-variate, and effect relationships in human biomonitoring studies.
2020
Comet assay
DNA damage
Fpg-sensitive sites
Human biomonitoring
Statistical analysis
Adult
Age Factors
Biological Monitoring
Comet Assay
DNA-Formamidopyrimidine Glycosylase
Environmental Exposure
Escherichia coli Proteins
Female
Humans
Male
Middle Aged
Obesity
Risk Factors
Seasons
Sex Factors
Tobacco Smoking
DNA Damage
Oxidative Stress
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/7616
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 100
  • ???jsp.display-item.citation.isi??? 91
social impact