5-hydroxymethylcytosine is a new epigenetic modification deriving from the oxidation of 5-methylcytosine by the TET hydroxylase enzymes. DNA hydroxymethylation drives DNA demethylation events and is involved in the control of gene expression. Deregulation of TET enzymes causes developmental defects and is associated with pathological conditions such as cancer. Little information thus far is available on the regulation of TET activity by post-translational modifications. Here we show that TET1 protein is able to interact with PARP-1/ARTD1 enzyme and is target of both noncovalent and covalent PARylation. In particular, we have demonstrated that the noncovalent binding of ADP-ribose polymers with TET1 catalytic domain decreases TET1 hydroxylase activity while the covalent PARylation stimulates TET1 enzyme. In addition, TET1 activates PARP-1/ARTD1 independently of DNA breaks. Collectively, our results highlight a complex interplay between PARylation and TET1 which may be helpful in coordinating the multiple biological roles played by 5-hydroxymethylcytosine and TET proteins.

5mC-hydroxylase activity is influenced by the PARylation of TET1 enzyme

Ciccarone, Fabio;
2015-01-01

Abstract

5-hydroxymethylcytosine is a new epigenetic modification deriving from the oxidation of 5-methylcytosine by the TET hydroxylase enzymes. DNA hydroxymethylation drives DNA demethylation events and is involved in the control of gene expression. Deregulation of TET enzymes causes developmental defects and is associated with pathological conditions such as cancer. Little information thus far is available on the regulation of TET activity by post-translational modifications. Here we show that TET1 protein is able to interact with PARP-1/ARTD1 enzyme and is target of both noncovalent and covalent PARylation. In particular, we have demonstrated that the noncovalent binding of ADP-ribose polymers with TET1 catalytic domain decreases TET1 hydroxylase activity while the covalent PARylation stimulates TET1 enzyme. In addition, TET1 activates PARP-1/ARTD1 independently of DNA breaks. Collectively, our results highlight a complex interplay between PARylation and TET1 which may be helpful in coordinating the multiple biological roles played by 5-hydroxymethylcytosine and TET proteins.
2015
5hmC; PARylation; TET1; 5-Methylcytosine; Amino Acid Sequence; Catalytic Domain; Cytosine; DNA Damage; DNA Methylation; Enzyme-Linked Immunosorbent Assay; Epigenesis, Genetic; Glutathione Transferase; HEK293 Cells; Humans; Immunoprecipitation; Mixed Function Oxygenases; Molecular Sequence Data; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Protein Processing, Post-Translational; Proto-Oncogene Proteins; Recombinant Proteins; Sequence Homology, Amino Acid; Gene Expression Regulation, Neoplastic
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/4595
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 41
social impact