Reactive oxygen species- (ROS-) mediated autophagy physiologically contributes to management of cell homeostasis in response to mild oxidative stress. Cancer cells typically engage autophagy downstream of ROS signaling derived from hypoxia and starvation, which are harsh environmental conditions that need to be faced for cancer development and progression. Hepatocellular carcinoma (HCC) is a solid tumor for which several environmental risk factors, particularly viral infections and alcohol abuse, have been shown to promote carcinogenesis via augmentation of oxidative stress. In addition, ROS burst in HCC cells frequently takes place after administration of therapeutic compounds that promote apoptotic cell death or even autophagic cell death. The interplay between ROS and autophagy (i) in the disposal of dysfunctional mitochondria via mitophagy, as a tumor suppressor mechanism, or (ii) in the cell survival adaptive response elicited by chemotherapeutic interventions, as a tumor-promoting event, will be depicted in this review in relation to HCC development and progression.

Oxidative Stress-Driven Autophagy acROSs Onset and Therapeutic Outcome in Hepatocellular Carcinoma

Ciccarone, Fabio;
2019-01-01

Abstract

Reactive oxygen species- (ROS-) mediated autophagy physiologically contributes to management of cell homeostasis in response to mild oxidative stress. Cancer cells typically engage autophagy downstream of ROS signaling derived from hypoxia and starvation, which are harsh environmental conditions that need to be faced for cancer development and progression. Hepatocellular carcinoma (HCC) is a solid tumor for which several environmental risk factors, particularly viral infections and alcohol abuse, have been shown to promote carcinogenesis via augmentation of oxidative stress. In addition, ROS burst in HCC cells frequently takes place after administration of therapeutic compounds that promote apoptotic cell death or even autophagic cell death. The interplay between ROS and autophagy (i) in the disposal of dysfunctional mitochondria via mitophagy, as a tumor suppressor mechanism, or (ii) in the cell survival adaptive response elicited by chemotherapeutic interventions, as a tumor-promoting event, will be depicted in this review in relation to HCC development and progression.
2019
Carcinoma, Hepatocellular; Humans; Liver Neoplasms; Mitophagy; Reactive Oxygen Species; Signal Transduction; Treatment Outcome; Autophagy; Oxidative Stress
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/4582
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 51
social impact