Motivated by the recent work (Donatelli et al. Electron. Trans. Numer. Anal. 59, 157-178 2023) on a preconditioned MINRES for flipped linear systems in imaging with Dirichlet boundary conditions (BCs), in this note we extend the scope of that research for including more precise BCs such as reflective and anti-reflective ones. We prove spectral results for the matrix-sequences associated to the original deblurring problem incorporating the considered BCs. More precisely, the resulting matrix-sequences are real quasi-symmetric i.e. real symmetric up to zero-distributed perturbations and this justifies the use of MINRES in the current setting. The theoretical spectral analysis is supported by a wide variety of numerical experiments, concerning the visualization of the spectra of the original matrices in various ways. We also report numerical tests regarding the convergence speed and regularization features of the associated GMRES and MINRES methods. Conclusions and open problems end the present study.

Flipped structured matrix-sequences in image deblurring with reflective and anti-reflective boundary conditions

Furci I.;
2025-01-01

Abstract

Motivated by the recent work (Donatelli et al. Electron. Trans. Numer. Anal. 59, 157-178 2023) on a preconditioned MINRES for flipped linear systems in imaging with Dirichlet boundary conditions (BCs), in this note we extend the scope of that research for including more precise BCs such as reflective and anti-reflective ones. We prove spectral results for the matrix-sequences associated to the original deblurring problem incorporating the considered BCs. More precisely, the resulting matrix-sequences are real quasi-symmetric i.e. real symmetric up to zero-distributed perturbations and this justifies the use of MINRES in the current setting. The theoretical spectral analysis is supported by a wide variety of numerical experiments, concerning the visualization of the spectra of the original matrices in various ways. We also report numerical tests regarding the convergence speed and regularization features of the associated GMRES and MINRES methods. Conclusions and open problems end the present study.
2025
Eigenvalue and singular value distributions
Ill-posedness and regularization problems
Imaging and signal processing
Krylov iterative methods
Reflective and anti-reflective BCs
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/31902
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact