Kaempferol (3,4',5,7-tetrahydroxyflavone) is a flavonoid with anti- and pro-oxidant activity present in various natural sources. Kaempferol has been shown to posses anticancer properties through the induction of the apoptotic program. Here we report that treatment of the chronic myelogenous leukemia cell line KG62 and promyelocitic human leukemia U937 with 50 mu M kaempferol resulted in an increase of the antioxidant enzymes Mn and Cu/Zn superoxide dismutase (SOD). Kaempferol treatment induced apoptosis by decreasing the expression of Bcl-2 and increasing the expressions of Bax. There were also induction of mitochondrial release of cytochrome c into cytosol and significant activation of caspase-3, and -9 with PARP cleavage. Kaempferol treatment increased the expression and the mitochondria localization of the NAD-dependent deacetylase SIRT3. K562 cells stably overexpressing SIRT3 were more sensitive to kaempferol, whereas SIRT3 silencing did not increase the resistance or K562 cells to kaempferol. Inhibition of PI3K and de-phosphorylation of Akt at Ser473 and Thr308 was also observed after treating both K562 and U937 cells with kaempferol. In conclusion our study shows that the oxidative stress induced by kaempferol in K562 and U937 cell lines causes the inactivation of Akt and the activation of the mitochondrial phase of the apoptotic program with an increase of Bax and SIRT3, decrease of Bcl-2, release of cytochrome c, caspase-3 activation, and cell death. J. Cell. Biochem. 106: 643-650, 2009. (C) 2009 Wiley-Liss, Inc.

Kaempferol Induces Apoptosis in Two Different Cell Lines Via Akt Inactivation, Bax and SIRT3 Activation, and Mitochondrial Dysfunction

Matteo Antonio Russo
2009-01-01

Abstract

Kaempferol (3,4',5,7-tetrahydroxyflavone) is a flavonoid with anti- and pro-oxidant activity present in various natural sources. Kaempferol has been shown to posses anticancer properties through the induction of the apoptotic program. Here we report that treatment of the chronic myelogenous leukemia cell line KG62 and promyelocitic human leukemia U937 with 50 mu M kaempferol resulted in an increase of the antioxidant enzymes Mn and Cu/Zn superoxide dismutase (SOD). Kaempferol treatment induced apoptosis by decreasing the expression of Bcl-2 and increasing the expressions of Bax. There were also induction of mitochondrial release of cytochrome c into cytosol and significant activation of caspase-3, and -9 with PARP cleavage. Kaempferol treatment increased the expression and the mitochondria localization of the NAD-dependent deacetylase SIRT3. K562 cells stably overexpressing SIRT3 were more sensitive to kaempferol, whereas SIRT3 silencing did not increase the resistance or K562 cells to kaempferol. Inhibition of PI3K and de-phosphorylation of Akt at Ser473 and Thr308 was also observed after treating both K562 and U937 cells with kaempferol. In conclusion our study shows that the oxidative stress induced by kaempferol in K562 and U937 cell lines causes the inactivation of Akt and the activation of the mitochondrial phase of the apoptotic program with an increase of Bax and SIRT3, decrease of Bcl-2, release of cytochrome c, caspase-3 activation, and cell death. J. Cell. Biochem. 106: 643-650, 2009. (C) 2009 Wiley-Liss, Inc.
2009
apoptosis; bax; bcl-2; kaempferol; sirtuins
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/3188
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 149
  • ???jsp.display-item.citation.isi??? 137
social impact