Many intracellular bacteria interfere with mitochondrial dynamics or target other organelles, thereby inducing a specific cellular response that could emerge as a strategy of the pathogen to ensure its survival, or as a form of defense employed by the host cell to restrict dissemination. In this context, the concomitant monitoring of both pathogen migration and (intra)cellular dynamics in live cells emerges as a pivotal aspect for the comprehension of the infection sequence and to visualize the pathogen-mediated remodeling that could occur to the entire cellular system. Holotomographic microscopy can be used to achieve this goal, allowing the simultaneous analysis of both bacterial movement and intracellular alteration for extended periods of time, with high spatial resolution and avoiding side-effects due to phototoxicity. Here we provide a holotomography-based approach to detect Listeria monocytogenes dynamics and its effects on the entire cellular system at morphological level.
Monitoring cellular dynamics upon infection using a holotomography-based approach
Marcheggiani, Fabio;
2025-01-01
Abstract
Many intracellular bacteria interfere with mitochondrial dynamics or target other organelles, thereby inducing a specific cellular response that could emerge as a strategy of the pathogen to ensure its survival, or as a form of defense employed by the host cell to restrict dissemination. In this context, the concomitant monitoring of both pathogen migration and (intra)cellular dynamics in live cells emerges as a pivotal aspect for the comprehension of the infection sequence and to visualize the pathogen-mediated remodeling that could occur to the entire cellular system. Holotomographic microscopy can be used to achieve this goal, allowing the simultaneous analysis of both bacterial movement and intracellular alteration for extended periods of time, with high spatial resolution and avoiding side-effects due to phototoxicity. Here we provide a holotomography-based approach to detect Listeria monocytogenes dynamics and its effects on the entire cellular system at morphological level.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


