Under an appropriate oscillating behavior either at zero or at infinity of the nonlinear data, the existence of a sequence of weak solutions for parametric quasilinear systems of the gradient-type on the Sierpinski gasket is proved. Moreover, by adopting the same hypotheses on the potential and in presence of suitable small perturbations, the same conclusion is achieved. The approach is based on variational methods and on certain analytic and geometrical properties of the SierpiA"ski fractal as, for instance, a compact embedding result due to Fukushima and Shima.

Qualitative Analysis of Gradient-Type Systems with Oscillatory Nonlinearities on the Sierpinski Gasket

Molica Bisci G;
2013-01-01

Abstract

Under an appropriate oscillating behavior either at zero or at infinity of the nonlinear data, the existence of a sequence of weak solutions for parametric quasilinear systems of the gradient-type on the Sierpinski gasket is proved. Moreover, by adopting the same hypotheses on the potential and in presence of suitable small perturbations, the same conclusion is achieved. The approach is based on variational methods and on certain analytic and geometrical properties of the SierpiA"ski fractal as, for instance, a compact embedding result due to Fukushima and Shima.
2013
Sierpinski gasket
Nonlinear elliptic equation
Dirichlet form
Weak Laplacian
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/28526
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact