We study a nonlinear parametric Neumann problem driven by a nonhomogeneous quasilinear elliptic differential operator div(a(x, del u)), a special case of which is the p-Laplacian. The reaction term is a nonlinearity function f which exhibits (p-1)-subcritical growth. By using variational methods, we prove a multiplicity result on the existence of weak solutions for such problems. An explicit example of an application is also presented.

Nonlinear Neumann problems driven by a nonhomogeneous differential operator

Molica Bisci G;
2014-01-01

Abstract

We study a nonlinear parametric Neumann problem driven by a nonhomogeneous quasilinear elliptic differential operator div(a(x, del u)), a special case of which is the p-Laplacian. The reaction term is a nonlinearity function f which exhibits (p-1)-subcritical growth. By using variational methods, we prove a multiplicity result on the existence of weak solutions for such problems. An explicit example of an application is also presented.
2014
Three weak solutions
Variational methods
Divergence type equations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/28521
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact