In this paper we study a highly nonlocal problem involving a fractional operator combined with a Kirchhoff-type coefficient. The latter is allowed to vanish at the origin (degenerate case). By working in a suitable fractional Sobolev space, which encode Dirichlet homogeneous boundary conditions, and exploiting the genus theory introduced by Krasnoselskii, we derive the existence of infinitely many weak solutions for this problem.

On a fractional Kirchhoff-type equation via Krasnoselskii's genus

MOLICA BISCI G;
2015-01-01

Abstract

In this paper we study a highly nonlocal problem involving a fractional operator combined with a Kirchhoff-type coefficient. The latter is allowed to vanish at the origin (degenerate case). By working in a suitable fractional Sobolev space, which encode Dirichlet homogeneous boundary conditions, and exploiting the genus theory introduced by Krasnoselskii, we derive the existence of infinitely many weak solutions for this problem.
2015
Kirchhoff-type equations
fractional Laplacian
nonlocal problems
variational methods
critical point theory
Krasnoselskii's genus
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/28512
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 46
social impact