In this paper we consider some nonlocal fractional equations driven by the fractional Laplace operator and depending on a real parameter. Under two different types of conditions on the nonlinearity, by using a famous critical point theorem in the presence of splitting established by Brezis and Nirenberg, we obtain the existence of at least two nontrivial weak solutions for our problem.

A Brezis-Nirenberg splitting approach for nonlocal fractional problems

Molica Bisci Giovanni;
2015-01-01

Abstract

In this paper we consider some nonlocal fractional equations driven by the fractional Laplace operator and depending on a real parameter. Under two different types of conditions on the nonlinearity, by using a famous critical point theorem in the presence of splitting established by Brezis and Nirenberg, we obtain the existence of at least two nontrivial weak solutions for our problem.
2015
Fractional Laplacian
Nonlocal problems
Variational methods
Critical point theory
Integrodifferential operators
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/28509
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? ND
social impact