We analyse an elliptic equation with critical growth set on a d-dimensional (d≥3) Hadamard manifold (M,g). By adopting a variational perspective, we prove the existence of non-zero non-negative solutions invariant under the action of a specific family of isometries. Our result remains valid when the original nonlinearity is singularly perturbed.
Isometry-invariant solutions to a critical problem on non-compact Riemannian manifolds
Molica Bisci, Giovanni;
2020-01-01
Abstract
We analyse an elliptic equation with critical growth set on a d-dimensional (d≥3) Hadamard manifold (M,g). By adopting a variational perspective, we prove the existence of non-zero non-negative solutions invariant under the action of a specific family of isometries. Our result remains valid when the original nonlinearity is singularly perturbed.File in questo prodotto:
	
	
	
    
	
	
	
	
	
	
	
	
		
			
				
			
		
		
	
	
	
	
		
			Non ci sono file associati a questo prodotto.
		
		
	
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


