We analyse an elliptic equation with critical growth set on a d-dimensional (d≥3) Hadamard manifold (M,g). By adopting a variational perspective, we prove the existence of non-zero non-negative solutions invariant under the action of a specific family of isometries. Our result remains valid when the original nonlinearity is singularly perturbed.

Isometry-invariant solutions to a critical problem on non-compact Riemannian manifolds

Molica Bisci, Giovanni;
2020-01-01

Abstract

We analyse an elliptic equation with critical growth set on a d-dimensional (d≥3) Hadamard manifold (M,g). By adopting a variational perspective, we prove the existence of non-zero non-negative solutions invariant under the action of a specific family of isometries. Our result remains valid when the original nonlinearity is singularly perturbed.
2020
Critical equation
Existence results
Isometry
Multiplicity
Non-compact Riemannian manifold
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/28466
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact