We study a compactness result for Sobolev spaces associated to a strip. As an application, we study a Neumann problem involving the p(x,y)-Laplacian operator and an oscillating nonlinearity, proving the existence of infinitely many cylindrically symmetric weak solutions. Our approach is based on variational and topological methods in addition to the principle of symmetric criticality.

A compact embedding result for anisotropic Sobolev spaces associated to a strip-like domain and some applications

Molica Bisci, Giovanni
2021-01-01

Abstract

We study a compactness result for Sobolev spaces associated to a strip. As an application, we study a Neumann problem involving the p(x,y)-Laplacian operator and an oscillating nonlinearity, proving the existence of infinitely many cylindrically symmetric weak solutions. Our approach is based on variational and topological methods in addition to the principle of symmetric criticality.
2021
Anisotropic problems
Compact embedding results
Variational method
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/28451
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact