This article concerns a class of nonlocal fractional Laplacian problems depending of three real parameters. More precisely, by using an appropriate analytical context on fractional Sobolev spaces due to Servadei and Valdinoci (in order to correctly encode the Dirichlet boundary datum in the variational formulation of our problem) we establish the existence of three weak solutions for fractional equations via a recent abstract critical point result for differentiable and parametric functionals recently proved by Ricceri.

Three weak solutions for nonlocal fractional equations

Molica Bisci G;
2014-01-01

Abstract

This article concerns a class of nonlocal fractional Laplacian problems depending of three real parameters. More precisely, by using an appropriate analytical context on fractional Sobolev spaces due to Servadei and Valdinoci (in order to correctly encode the Dirichlet boundary datum in the variational formulation of our problem) we establish the existence of three weak solutions for fractional equations via a recent abstract critical point result for differentiable and parametric functionals recently proved by Ricceri.
2014
Fractional equations
Multiple solutions
Critical points results
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/28448
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 48
social impact