In this paper we deal with a bifurcation result for a parametric one-dimensional mean curvature problem. More precisely, a critical point theorem ( local minimum result) for differentiable functionals is exploited in order to prove that the above problem admits at least one nontrivial and nonnegative weak solution under an asymptotical behaviour of the nonlinear datum at zero. A concrete example of an application is then presented.

Some Remarks for one-dimensional mean curvature problems through a local minimization principle

Molica Bisci G
2013-01-01

Abstract

In this paper we deal with a bifurcation result for a parametric one-dimensional mean curvature problem. More precisely, a critical point theorem ( local minimum result) for differentiable functionals is exploited in order to prove that the above problem admits at least one nontrivial and nonnegative weak solution under an asymptotical behaviour of the nonlinear datum at zero. A concrete example of an application is then presented.
2013
One-dimensional prescribed curvature problem
variational methods
existence results
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/28446
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact