In this paper, using a Hodge-type decomposition of variable exponent Lebesgue spaces of Clifford-valued functions and variational methods, we study the properties of weak solutions to the homogeneous and nonhomogeneous A-Dirac equations with variable growth in the setting of variable exponent Sobolev spaces of Clifford-valued functions.

Existence of Stationary States for A-Dirac Equations with Variable Growth

Molica Bisci G;
2015-01-01

Abstract

In this paper, using a Hodge-type decomposition of variable exponent Lebesgue spaces of Clifford-valued functions and variational methods, we study the properties of weak solutions to the homogeneous and nonhomogeneous A-Dirac equations with variable growth in the setting of variable exponent Sobolev spaces of Clifford-valued functions.
2015
Clifford analysis
A-Dirac equation
variable exponent
Caccioppoli estimates
Hodge-type decomposition
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/28441
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact