Under an appropriate oscillating behaviour either at zero or at infinity of the nonlinear term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem on the Sierpinski gasket is proved. Our approach is based on variational methods and on some analytic and geometrical properties of the Sierpinski fractal. The abstract results are illustrated by explicit examples.

Variational Analysis for a nonlinear elliptic problem on the Sierpinski gasket

Molica Bisci G;
2012-01-01

Abstract

Under an appropriate oscillating behaviour either at zero or at infinity of the nonlinear term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem on the Sierpinski gasket is proved. Our approach is based on variational methods and on some analytic and geometrical properties of the Sierpinski fractal. The abstract results are illustrated by explicit examples.
2012
Sierpinski gasket
nonlinear elliptic equation
Dirichlet form
weak Laplacian
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/28432
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 31
social impact