We discuss the multiplicity of nonnegative solutions of a parametric one-dimensional mean curvature problem. Our main effort here is to describe the configuration of the limits of a certain function, depending on the potential at zero, that yield, for certain values of the parameter, the existence of infinitely many weak nonnegative and nontrivial solutions. Moreover, thanks to a classical regularity result due to Lieberman, this sequence of solutions strongly converges to zero in C^1 ([0, 1]). Our approach is based on recent variational methods.

A variational approach for one-dimensional prescribed mean curvature problems

Molica Bisci G
2014-01-01

Abstract

We discuss the multiplicity of nonnegative solutions of a parametric one-dimensional mean curvature problem. Our main effort here is to describe the configuration of the limits of a certain function, depending on the potential at zero, that yield, for certain values of the parameter, the existence of infinitely many weak nonnegative and nontrivial solutions. Moreover, thanks to a classical regularity result due to Lieberman, this sequence of solutions strongly converges to zero in C^1 ([0, 1]). Our approach is based on recent variational methods.
2014
One-dimensional prescribed curvature problem
variational methods
infinitely many solutions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/28409
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact