: Ponatinib (Pon) is a multi-tyrosine kinase inhibitor that demonstrated high efficiency for treating cancer. However, severe side effects caused by Pon off-targeting effects prevent its extensive use. Using our understanding into the mechanisms by which Pon is transported by bovine serum albumin in the blood, we have successfully encapsulated Pon into a biomimetic nanoparticle (NP). This lipid NP (i.e., "leukosomes") incorporates membrane proteins purified from activated leukocytes that enable immune evasion, and enhanced targeting of inflamed endothelium NPs have been characterized for their size, charge, and encapsulation efficiency. Membrane proteins enriched on the NP surface enabled modulation of Pon release. These NP formulations showed promising dose-response results on two different murine osteosarcoma cell lines, F420 and RF379. Our results indicate that our fabrication method is reproducible, nonuser-dependent, efficient in loading Pon, and applicable toward repurposing numerous therapeutic agents previously shelved due to toxicity profiles.

Reproducible and Characterized Method for Ponatinib Encapsulation into Biomimetic Lipid Nanoparticles as a Platform for Multi-Tyrosine Kinase-Targeted Therapy

Tasciotti, Ennio;
2020-01-01

Abstract

: Ponatinib (Pon) is a multi-tyrosine kinase inhibitor that demonstrated high efficiency for treating cancer. However, severe side effects caused by Pon off-targeting effects prevent its extensive use. Using our understanding into the mechanisms by which Pon is transported by bovine serum albumin in the blood, we have successfully encapsulated Pon into a biomimetic nanoparticle (NP). This lipid NP (i.e., "leukosomes") incorporates membrane proteins purified from activated leukocytes that enable immune evasion, and enhanced targeting of inflamed endothelium NPs have been characterized for their size, charge, and encapsulation efficiency. Membrane proteins enriched on the NP surface enabled modulation of Pon release. These NP formulations showed promising dose-response results on two different murine osteosarcoma cell lines, F420 and RF379. Our results indicate that our fabrication method is reproducible, nonuser-dependent, efficient in loading Pon, and applicable toward repurposing numerous therapeutic agents previously shelved due to toxicity profiles.
2020
biomimicry
bovine serum albumin
liposomes
osteosarcoma
ponatinib
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/23426
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact