: Inborn errors of metabolism (IEMs) comprise a diverse group of monogenic disorders caused by enzyme deficiencies that result either in a toxic accumulation of metabolic intermediates or a shortage of essential end-products. Certain IEMs, like phenylketonuria (PKU), necessitate stringent dietary intervention that could lead to microbiome dysbiosis, thereby exacerbating the clinical phenotype. The objective of this systematic review was to examine the impact of PKU therapies on the intestinal microbiota. This research was conducted following the PRISMA Statement, with data from PubMed, Scopus, ScienceDirect, and Web of Science. A total of 18 articles meeting the inclusion criteria were published from 2011 to 2022. Significant reductions in several taxonomic groups in individuals with PKU when compared to the control group were detected in a quantitative analysis conducted across seven studies. The meta-analysis synthesis indicates a contrast in biodiversity between PKU subjects and the control population. Additionally, the meta-regression results, derived from the Bacillota/Bacteroidota ratio data, suggest a potential influence of diet in adult PKU populations (p = 0.004). It is worth noting that the limited number of studies calls for further research and analysis in this area. Our findings indicate the necessity of enhancing understanding of microbiota variability in reaction to treatments among PKU subjects to design tailored therapeutic and nutritional interventions to prevent complications resulting from microbiota disruption.

Systematic Review and Meta-Analysis of Dietary Interventions and Microbiome in Phenylketonuria

Fortugno, Paola;
2023-01-01

Abstract

: Inborn errors of metabolism (IEMs) comprise a diverse group of monogenic disorders caused by enzyme deficiencies that result either in a toxic accumulation of metabolic intermediates or a shortage of essential end-products. Certain IEMs, like phenylketonuria (PKU), necessitate stringent dietary intervention that could lead to microbiome dysbiosis, thereby exacerbating the clinical phenotype. The objective of this systematic review was to examine the impact of PKU therapies on the intestinal microbiota. This research was conducted following the PRISMA Statement, with data from PubMed, Scopus, ScienceDirect, and Web of Science. A total of 18 articles meeting the inclusion criteria were published from 2011 to 2022. Significant reductions in several taxonomic groups in individuals with PKU when compared to the control group were detected in a quantitative analysis conducted across seven studies. The meta-analysis synthesis indicates a contrast in biodiversity between PKU subjects and the control population. Additionally, the meta-regression results, derived from the Bacillota/Bacteroidota ratio data, suggest a potential influence of diet in adult PKU populations (p = 0.004). It is worth noting that the limited number of studies calls for further research and analysis in this area. Our findings indicate the necessity of enhancing understanding of microbiota variability in reaction to treatments among PKU subjects to design tailored therapeutic and nutritional interventions to prevent complications resulting from microbiota disruption.
2023
dietary interventions
dysbiosis
inborn errors of metabolism
microbiota
phenylketonuria
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/19954
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact