Current mass spectrometry-based methodologies for synthetic organic reaction monitoring largely use electrospray ionization (ESI), or other related atmospheric pressure ionizationbased approaches. Monitoring of complex, heterogeneous systems may be problematic because of sampling hardware limitations, and many relevant analytes (neutrals) exhibit poor ESI performance. An alternative monitoring strategy addressing this significant impasse is condensed phase membrane introduction mass spectrometry using liquid electron ionization (CP-MIMS-LEI). In CP-MIMS, a semipermeable silicone membrane selects hydrophobic neutral analytes, rejecting particulates and charged chemical components. Analytes partition through the membrane, and are then transported to the LEI interface for sequential nebulization, vaporization, and ionization. CP-MIMS and LEI are both ideal for continuous monitoring applications of hydrophobic neutral molecules. We demonstrate quantitative reaction monitoring of harsh, complex reaction mixtures (alkaline, acidic, heterogeneous) in protic and aprotic organic solvents. Also presented are solvent-membrane compatibility investigations and, in situ quantitative monitoring of catalytic oxidation and alkylation reactions.

Mass Spectrometry Based Approach for Organic Synthesis Monitoring

Giovanni Zappia;
2019-01-01

Abstract

Current mass spectrometry-based methodologies for synthetic organic reaction monitoring largely use electrospray ionization (ESI), or other related atmospheric pressure ionizationbased approaches. Monitoring of complex, heterogeneous systems may be problematic because of sampling hardware limitations, and many relevant analytes (neutrals) exhibit poor ESI performance. An alternative monitoring strategy addressing this significant impasse is condensed phase membrane introduction mass spectrometry using liquid electron ionization (CP-MIMS-LEI). In CP-MIMS, a semipermeable silicone membrane selects hydrophobic neutral analytes, rejecting particulates and charged chemical components. Analytes partition through the membrane, and are then transported to the LEI interface for sequential nebulization, vaporization, and ionization. CP-MIMS and LEI are both ideal for continuous monitoring applications of hydrophobic neutral molecules. We demonstrate quantitative reaction monitoring of harsh, complex reaction mixtures (alkaline, acidic, heterogeneous) in protic and aprotic organic solvents. Also presented are solvent-membrane compatibility investigations and, in situ quantitative monitoring of catalytic oxidation and alkylation reactions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/19526
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact