The challenge of mimicking the extracellular matrix with artificial scaffolds that are able to reduce immunoresponse is still unmet. Recent findings have shown that mesenchymal stem cells (MSC) infiltrating into the implanted scaffold have effects on the implant integration by improving the healing process. Toward this aim, a novel polyamidoamine-based nanocomposite hydrogel is synthesized, cross-linked with porous nanomaterials (i.e., mesoporous silica nanoparticles), able to release chemokine proteins. A comprehensive viscoelasticity study confirms that the hydrogel provides optimal structural support for MSC infiltration and proliferation. The efficiency of this hydrogel, containing the chemoattractant stromal cell-derived factor 1α (SDF-1α), in promoting MSC migration in vitro is demonstrated. Finally, subcutaneous implantation of SDF-1α-releasing hydrogels in mice results in a modulation of the inflammatory reaction. Overall, the proposed SDF-1α-nanocomposite hydrogel proves to have potential for applications in tissue engineering.

Nanocomposite Hydrogels as Platform for Cells Growth, Proliferation, and Chemotaxis

Tasciotti E;
2016-01-01

Abstract

The challenge of mimicking the extracellular matrix with artificial scaffolds that are able to reduce immunoresponse is still unmet. Recent findings have shown that mesenchymal stem cells (MSC) infiltrating into the implanted scaffold have effects on the implant integration by improving the healing process. Toward this aim, a novel polyamidoamine-based nanocomposite hydrogel is synthesized, cross-linked with porous nanomaterials (i.e., mesoporous silica nanoparticles), able to release chemokine proteins. A comprehensive viscoelasticity study confirms that the hydrogel provides optimal structural support for MSC infiltration and proliferation. The efficiency of this hydrogel, containing the chemoattractant stromal cell-derived factor 1α (SDF-1α), in promoting MSC migration in vitro is demonstrated. Finally, subcutaneous implantation of SDF-1α-releasing hydrogels in mice results in a modulation of the inflammatory reaction. Overall, the proposed SDF-1α-nanocomposite hydrogel proves to have potential for applications in tissue engineering.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/19400
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 47
social impact