Protein therapeutics often require repeated administrations of drug over a long period of time. Protein instability is a major obstacle to the development of systems for their controlled and sustained release. We describe a surface modification of nanoporous silicon particles (NSP) with an agarose hydrogel matrix that enhances their ability to load and release proteins, influencing intracellular delivery and preserving molecular stability. We developed and characterized an agarose surface modification of NSP. Stability of the released protein after enzymatic treatment of loaded particles was evaluated with SDS-page and HPLC analysis. FITC-conjugated BSA was chosen as probe protein and intracellular delivery evaluated by fluorescence microscopy. We showed that agarose coating does not affect NSP protein release rate, while fewer digestion products were found in the released solution after all the enzymatic treatments. Confocal images show that the hydrogel coating improves intracellular delivery, specifically within the nucleus, without affecting the internalization process. This modification of porous silicon adds to its tunability, biocompatibility, and biodegradability the ability to preserve protein integrity during delivery without affecting release rates and internalization dynamics. Moreover, it may allow the silicon particles to function as protein carriers that enable control of cell function.

Agarose Surface Coating Influences Intracellular Accumulation and Enhances Payload Stability of a Nano-delivery System

Tasciotti E
2011-01-01

Abstract

Protein therapeutics often require repeated administrations of drug over a long period of time. Protein instability is a major obstacle to the development of systems for their controlled and sustained release. We describe a surface modification of nanoporous silicon particles (NSP) with an agarose hydrogel matrix that enhances their ability to load and release proteins, influencing intracellular delivery and preserving molecular stability. We developed and characterized an agarose surface modification of NSP. Stability of the released protein after enzymatic treatment of loaded particles was evaluated with SDS-page and HPLC analysis. FITC-conjugated BSA was chosen as probe protein and intracellular delivery evaluated by fluorescence microscopy. We showed that agarose coating does not affect NSP protein release rate, while fewer digestion products were found in the released solution after all the enzymatic treatments. Confocal images show that the hydrogel coating improves intracellular delivery, specifically within the nucleus, without affecting the internalization process. This modification of porous silicon adds to its tunability, biocompatibility, and biodegradability the ability to preserve protein integrity during delivery without affecting release rates and internalization dynamics. Moreover, it may allow the silicon particles to function as protein carriers that enable control of cell function.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/19392
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 24
social impact