Despite an improved understanding of its pathophysiology and a wide range of new treatments, cardiovascular disease (CVD) remains a serious public health issue and the number one cause of mortality in the United States. Conditions that promote chronic systemic inflammation, such as obesity, cancer, and autoimmune and infectious diseases, are now known to play an important role in promoting CVD by inducing the expression of endothelial adhesion molecules and chemokines; these in turn promote leukocyte adherence and infiltration, which initiates and spurs the progression of CVD. In response to this new understanding, researchers are evaluating the potential cardiovascular benefits of new-generation therapies based on endogenous molecules with anti-inflammatory properties. Similarly, targeted approaches that leverage the phenotypic differences between non-inflamed and inflamed endothelia have the potential to selectively deliver therapeutics and decrease the morbidity and mortality of CVD patients. In this review, we discuss the role of inflammation in CVD and explore the therapeutic potential of targeting inflamed vasculature through conventional and biomimetic approaches.

Vascular Inflammation: A Novel Access 
Route for Nanomedicine

Tasciotti E
2016-01-01

Abstract

Despite an improved understanding of its pathophysiology and a wide range of new treatments, cardiovascular disease (CVD) remains a serious public health issue and the number one cause of mortality in the United States. Conditions that promote chronic systemic inflammation, such as obesity, cancer, and autoimmune and infectious diseases, are now known to play an important role in promoting CVD by inducing the expression of endothelial adhesion molecules and chemokines; these in turn promote leukocyte adherence and infiltration, which initiates and spurs the progression of CVD. In response to this new understanding, researchers are evaluating the potential cardiovascular benefits of new-generation therapies based on endogenous molecules with anti-inflammatory properties. Similarly, targeted approaches that leverage the phenotypic differences between non-inflamed and inflamed endothelia have the potential to selectively deliver therapeutics and decrease the morbidity and mortality of CVD patients. In this review, we discuss the role of inflammation in CVD and explore the therapeutic potential of targeting inflamed vasculature through conventional and biomimetic approaches.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/19326
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact