Background: Space travel has always been one of mankind's greatest dreams. Thanks to technological innovation, this dream is becoming more of a reality. Soon, humans (not only astronauts) will travel, live, and work in space. However, a microgravity environment can induce several pathological alterations that should be, at least in part, controlled and alleviated. Among those, glucose homeostasis impairment and insulin resistance occur, which can lead to reduced muscle mass and liver dysfunctions. Thus, it is relevant to shed light on the mechanism underlaying these pathological conditions, also considering a nutritional approach that can mitigate these effects. Methods: To achieve this goal, we used Prdx6-/- mice exposed to Hindlimb Unloading (HU), a well-established experimental protocol to simulate microgravity, fed with a chow diet or an omega-3-enriched diet. Results: Our results innovatively demonstrated that HU-induced metabolic alterations, mainly related to glucose metabolism, may be mitigated by the administration of omega-3-enriched diet. Specifically, a significant improvement in insulin resistance has been reported. Conclusions: Although preliminary, our results highlight the importance of specific nutritional approaches that can alleviate microgravity-induced harmful effects. These findings should be considered soon by those planning trips around the earth.

Omega-3-Enriched Diet Improves Metabolic Profile in Prdx6-Deficient Mice Exposed to Microgravity

Pastore, Donatella;
2023-01-01

Abstract

Background: Space travel has always been one of mankind's greatest dreams. Thanks to technological innovation, this dream is becoming more of a reality. Soon, humans (not only astronauts) will travel, live, and work in space. However, a microgravity environment can induce several pathological alterations that should be, at least in part, controlled and alleviated. Among those, glucose homeostasis impairment and insulin resistance occur, which can lead to reduced muscle mass and liver dysfunctions. Thus, it is relevant to shed light on the mechanism underlaying these pathological conditions, also considering a nutritional approach that can mitigate these effects. Methods: To achieve this goal, we used Prdx6-/- mice exposed to Hindlimb Unloading (HU), a well-established experimental protocol to simulate microgravity, fed with a chow diet or an omega-3-enriched diet. Results: Our results innovatively demonstrated that HU-induced metabolic alterations, mainly related to glucose metabolism, may be mitigated by the administration of omega-3-enriched diet. Specifically, a significant improvement in insulin resistance has been reported. Conclusions: Although preliminary, our results highlight the importance of specific nutritional approaches that can alleviate microgravity-induced harmful effects. These findings should be considered soon by those planning trips around the earth.
2023
aging model
glucose metabolism
space flight
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/19306
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact