Introduction: JC polyomavirus is the causative agent of progressive multifocal leukoencephalopathy (PML), a demyelinating disease resulting from the lytic infection of oligodendrocytes that may develop in immunosuppressed individuals: HIV1 infected or individuals under immunosuppressive therapies. Understanding the biology of JCPyV is necessary for a proper patient management, the development of diagnostic tests, and risk stratification. Areas covered: The review covers different areas of expertise including the genomic characterization of JCPyV strains detected in different body compartments (urine, plasma, and cerebrospinal fluid) of PML patients, viral mutations, molecular diagnostics, viral miRNAs, and disease. Expert opinion: The implementation of molecular biology techniques improved our understanding of JCPyV biology. Deep sequencing analysis of viral genomes revealed the presence of viral quasispecies in the cerebrospinal fluid of PML patients characterized by noncoding control region rearrangements and VP1 mutations. These neurotropic JCPyV variants present enhanced replication and an altered cell tropism that contribute to PML development. Monitoring these variants may be relevant for the identification of patients at risk of PML. Multiplex realtime PCR targeting both the LTAg and the archetype NCCR could be used to identify them. Failure to amplify NCCR should indicate the presence of a JCPyV prototype speeding up the diagnostic process.

JC polyomavirus. A short review of its biology, its association with progressive multifocal leukoencephalopathy, and the diagnostic value of different methods to manifest its activity or presence

Carla Prezioso;
2023-01-01

Abstract

Introduction: JC polyomavirus is the causative agent of progressive multifocal leukoencephalopathy (PML), a demyelinating disease resulting from the lytic infection of oligodendrocytes that may develop in immunosuppressed individuals: HIV1 infected or individuals under immunosuppressive therapies. Understanding the biology of JCPyV is necessary for a proper patient management, the development of diagnostic tests, and risk stratification. Areas covered: The review covers different areas of expertise including the genomic characterization of JCPyV strains detected in different body compartments (urine, plasma, and cerebrospinal fluid) of PML patients, viral mutations, molecular diagnostics, viral miRNAs, and disease. Expert opinion: The implementation of molecular biology techniques improved our understanding of JCPyV biology. Deep sequencing analysis of viral genomes revealed the presence of viral quasispecies in the cerebrospinal fluid of PML patients characterized by noncoding control region rearrangements and VP1 mutations. These neurotropic JCPyV variants present enhanced replication and an altered cell tropism that contribute to PML development. Monitoring these variants may be relevant for the identification of patients at risk of PML. Multiplex realtime PCR targeting both the LTAg and the archetype NCCR could be used to identify them. Failure to amplify NCCR should indicate the presence of a JCPyV prototype speeding up the diagnostic process.
2023
csf
jcpyv
nccr rearrangements
pml
realtime pcr
vp1 mutations
viral quasispecies
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/18356
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact