XOFs-type materials (X=M, C, S, that is, metal–organic frameworks, covalent organic frameworks and supramolecular organic frameworks, respectively) share a common unifying feature: mutual spatial orientation of constituting components is strictly directional and unchanging by design. Herein, we illustrate an alternate design for porous architectures, as rigid joints constituted by coordinative (MOFs), covalent (COFs), or hydrogen-donor/acceptor (SOFs) bonds, are replaced by supramolecular ball joints, which confer unprecedented flexibility, especially angular, to porous networks. The obtained frameworks remain highly organized but are also permutable: lacking a forced convergence towards an immutable minimum energy structure, these systems remain able to adjust depending on external conditions. Results of POF (permutable organized framework) synthesis is a family of structures rather than a single pre-determined three-dimensional arrangement, as we demonstrate with an illustrative set of 5 XRD structures.

Porous Frameworks Based on Supramolecular Ball Joints: Bringing Flexibility to Ordered 3D Lattices

Savastano M.
;
2020-01-01

Abstract

XOFs-type materials (X=M, C, S, that is, metal–organic frameworks, covalent organic frameworks and supramolecular organic frameworks, respectively) share a common unifying feature: mutual spatial orientation of constituting components is strictly directional and unchanging by design. Herein, we illustrate an alternate design for porous architectures, as rigid joints constituted by coordinative (MOFs), covalent (COFs), or hydrogen-donor/acceptor (SOFs) bonds, are replaced by supramolecular ball joints, which confer unprecedented flexibility, especially angular, to porous networks. The obtained frameworks remain highly organized but are also permutable: lacking a forced convergence towards an immutable minimum energy structure, these systems remain able to adjust depending on external conditions. Results of POF (permutable organized framework) synthesis is a family of structures rather than a single pre-determined three-dimensional arrangement, as we demonstrate with an illustrative set of 5 XRD structures.
2020
metal–organic frameworks
permutable organized frameworks
porous materials
supramolecular ball joint
supramolecular chemistry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/16547
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact