Desferoxamine (DFO) is currently the golden standard chelator for 89Zr4+, a promising nuclide for positron emission tomography imaging (PET). The natural siderophore DFO had previously been conjugated with fluorophores to obtain Fe(III) sensing molecules. In this study, a fluorescent coumarin derivative of DFO (DFOC) has been prepared and characterized (potentiometry, UV–Vis spectroscopy) for what concerns its protonation and metal coordination properties towards PET-relevant ions (Cu(II), Zr(IV)), evidencing strong similarity with pristine DFO. Retention of DFOC fluorescence emission upon metal binding has been checked (fluorescence spectrophotometry), as it would – and does – allow for optical (fluorescent) imaging, thus unlocking bimodal (PET/fluorescence) imaging for 89Zr(IV) tracers. Crystal violet and MTT assays on NIH-3 T3 fibroblasts and MDA-MB 231 mammary adenocarcinoma cell lines demonstrated, respectively, no cytotoxicity nor metabolic impairment at usual radiodiagnostic concentrations of ZrDFOC. Clonogenic colony-forming assay performed on X-irradiated MDA-MB 231 cells showed no interference of ZrDFOC with radiosensitivity. Morphological biodistribution (confocal fluorescence, transmission electron microscopy) assays on the same cells suggested internalization of the complex through endocytosis. Overall, these results support fluorophore-tagged DFO as a suitable option to achieve dual imaging (PET/fluorescence) probes based on 89Zr.

Evaluation of coumarin-tagged deferoxamine as a Zr(IV)-based PET/fluorescence dual imaging probe

Matteo Savastano
2023-01-01

Abstract

Desferoxamine (DFO) is currently the golden standard chelator for 89Zr4+, a promising nuclide for positron emission tomography imaging (PET). The natural siderophore DFO had previously been conjugated with fluorophores to obtain Fe(III) sensing molecules. In this study, a fluorescent coumarin derivative of DFO (DFOC) has been prepared and characterized (potentiometry, UV–Vis spectroscopy) for what concerns its protonation and metal coordination properties towards PET-relevant ions (Cu(II), Zr(IV)), evidencing strong similarity with pristine DFO. Retention of DFOC fluorescence emission upon metal binding has been checked (fluorescence spectrophotometry), as it would – and does – allow for optical (fluorescent) imaging, thus unlocking bimodal (PET/fluorescence) imaging for 89Zr(IV) tracers. Crystal violet and MTT assays on NIH-3 T3 fibroblasts and MDA-MB 231 mammary adenocarcinoma cell lines demonstrated, respectively, no cytotoxicity nor metabolic impairment at usual radiodiagnostic concentrations of ZrDFOC. Clonogenic colony-forming assay performed on X-irradiated MDA-MB 231 cells showed no interference of ZrDFOC with radiosensitivity. Morphological biodistribution (confocal fluorescence, transmission electron microscopy) assays on the same cells suggested internalization of the complex through endocytosis. Overall, these results support fluorophore-tagged DFO as a suitable option to achieve dual imaging (PET/fluorescence) probes based on 89Zr.
2023
desferoxamine
coumarin
Zr(IV)
PET
fluorescence
probe
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/16507
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact