Lowering the platinum group metal content of oxygen reduction reaction catalysts is among the most prevalent research focuses in the field. This target is herein approached through supported Pd(II) complexes. Starting from a commercial macrocycle, a new ligand is synthesized, its solution behavior and binding properties briefly explored (potentiometry, UV-Vis) and then used to prepare a new catalyst. A supramolecular approach is used in order to obtain homogeneous decoration of carbon nanotubes surfaces, fostering novel possibilities to access single-ion active sites. The novel catalyst is characterized through X-ray photoelectron spectroscopy and scanning transmission electron microscopy and its promising oxygen reduction reaction performance is evaluated via rotating ring-disk electrode and rotating disk electrode in half-cell studies.
Multi-Walled Carbon Nanotubes Supported Pd({II}) Complexes: A Supramolecular Approach towards Single-Ion Oxygen Reduction Reaction Catalysts
Matteo Savastano
;
2020-01-01
Abstract
Lowering the platinum group metal content of oxygen reduction reaction catalysts is among the most prevalent research focuses in the field. This target is herein approached through supported Pd(II) complexes. Starting from a commercial macrocycle, a new ligand is synthesized, its solution behavior and binding properties briefly explored (potentiometry, UV-Vis) and then used to prepare a new catalyst. A supramolecular approach is used in order to obtain homogeneous decoration of carbon nanotubes surfaces, fostering novel possibilities to access single-ion active sites. The novel catalyst is characterized through X-ray photoelectron spectroscopy and scanning transmission electron microscopy and its promising oxygen reduction reaction performance is evaluated via rotating ring-disk electrode and rotating disk electrode in half-cell studies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.