Synthesis of the new scorpiand ligand L composed of a [9]aneN3 macrocyclic ring bearing a CH2CH2NHCH2-anthracene tail is reported. L forms both cation (Zn2+) and anion (phosphate, benzoate) complexes. In addition, the zinc complexes of L bind these anions. The equilibrium constants for ligand protonation and complex formation were determined in 0.1 M NaCl aqueous solution at 298.1 ±0.1 K by means of potentiometric (pH-metric) titrations. pH Controlled coordination/detachment of the ligand tail to Zn2+ switch on and off the fluorescence emission from the anthracene fluorophore. Accordingly, L is able to sense Zn2+ in the pH range 6-10 down to nM concentrations of the metal ion. L can efficiently sense Zn2+ even in the presence of large excess of coordinating anions, such as cyanide, sulphide, phosphate and benzoate, despite their ability to bind the metal ion.
Sensing Zn2+ in aqueous solution with a fluorescent scorpiand macrocyclic ligand decorated with an anthracene bearing tail
Savastano M.;
2020-01-01
Abstract
Synthesis of the new scorpiand ligand L composed of a [9]aneN3 macrocyclic ring bearing a CH2CH2NHCH2-anthracene tail is reported. L forms both cation (Zn2+) and anion (phosphate, benzoate) complexes. In addition, the zinc complexes of L bind these anions. The equilibrium constants for ligand protonation and complex formation were determined in 0.1 M NaCl aqueous solution at 298.1 ±0.1 K by means of potentiometric (pH-metric) titrations. pH Controlled coordination/detachment of the ligand tail to Zn2+ switch on and off the fluorescence emission from the anthracene fluorophore. Accordingly, L is able to sense Zn2+ in the pH range 6-10 down to nM concentrations of the metal ion. L can efficiently sense Zn2+ even in the presence of large excess of coordinating anions, such as cyanide, sulphide, phosphate and benzoate, despite their ability to bind the metal ion.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.