There are well-known biological differences between women and men, especially in technical-coordinative variations that contribute to sex differences in performance of complex movements like the most important offensive action in volleyball, the spike jump. The aim of this study was to investigate sex-dependent performance and biomechanical characteristics in the volleyball spike jump. Thirty female and male sub-elite volleyball players were analysed while striking a stationary ball with maximal spike jump height. Twelve MX13 Vicon cameras with a cluster marker set, two AMTI force plates, surface EMG, and a Full-Body 3D model in Visual3D were used. Main findings include sex differences (P< .05) in jump height (p eta(2) = .73), approach [speed (p eta(2) = .61), step length], transition strategy [plant angle, neuromuscular activation (p eta(2) = .91), horizontal force maxima and impulses], acceleration distances [centre of mass displacement (p eta(2) = .21), minimal knee and hip angles], use of torso and arms [incline, angular velocity (p eta(2) = .23)]. Correlations support that the results cannot be explained fully by strength and power differences between sexes but represent the product of technical-coordinative variations. Their relevance is acknowledged for both sexes and numerous performance determinants displayed sex differences. The integration of such attributes into sex-specific training seems promising but its effect requires further investigation.

Spike jump biomechanics in male versus female elite volleyball players

Guidotti, Flavia;
2019-01-01

Abstract

There are well-known biological differences between women and men, especially in technical-coordinative variations that contribute to sex differences in performance of complex movements like the most important offensive action in volleyball, the spike jump. The aim of this study was to investigate sex-dependent performance and biomechanical characteristics in the volleyball spike jump. Thirty female and male sub-elite volleyball players were analysed while striking a stationary ball with maximal spike jump height. Twelve MX13 Vicon cameras with a cluster marker set, two AMTI force plates, surface EMG, and a Full-Body 3D model in Visual3D were used. Main findings include sex differences (P< .05) in jump height (p eta(2) = .73), approach [speed (p eta(2) = .61), step length], transition strategy [plant angle, neuromuscular activation (p eta(2) = .91), horizontal force maxima and impulses], acceleration distances [centre of mass displacement (p eta(2) = .21), minimal knee and hip angles], use of torso and arms [incline, angular velocity (p eta(2) = .23)]. Correlations support that the results cannot be explained fully by strength and power differences between sexes but represent the product of technical-coordinative variations. Their relevance is acknowledged for both sexes and numerous performance determinants displayed sex differences. The integration of such attributes into sex-specific training seems promising but its effect requires further investigation.
2019
Three-Dimensional (3D) analysis
kinesiology
kinetics
performance
sex
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/15591
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 35
social impact