An imbalance of oxy-inflammation status has been involved in axonal damage and demyelination in multiple sclerosis (MS). The aim of this study was to investigate the efficacy of an antioxidant treatment (calcium disodium ethylenediaminetetracetic acid—EDTA) chelation therapy associated with a micronutrient complex in MS patients. A total of 20 MS patients and 20 healthy subjects, enrolled as a control group (CTR), were recruited. We measured the plasma ROS production and total antioxidant capacity (TAC) by a direct assessment using Electron Paramagnetic Resonance; activities of the antioxidant system (thiols’ redox status and enzymes); and the urinary presence of biomarkers of oxidative stress by immunoenzymatic assays. We also evaluated the levels of inflammation by plasmatic cytokines (TNF , IL-1 , and IL-6) and assessed the sICAM levels, as well as the nitric oxide (NO) catabolism and transthyretin (TTR) concentration. Comparing CTR and MS, in the latter ROS production, oxidative damage, inflammatory biomarkers, and NO metabolite concentrations results were significantly higher, while TAC was significantly lower. Treatment in MS induced significant (p < 0.05) down-regulating of pro-inflammatory sICAM1, TNF- , IL6, as well as biomarkers of lipid peroxidation and DNA damage production. The protective effect exhibited may occur by decreasing ROS production and increasing antioxidant capacity, turning into a more reduced thiols’ status.

Chelation Therapy Associated with Antioxidant Supplementation Can Decrease Oxidative Stress and Inflammation in Multiple Sclerosis: Preliminary Results

Montorsi, Michela;
2023-01-01

Abstract

An imbalance of oxy-inflammation status has been involved in axonal damage and demyelination in multiple sclerosis (MS). The aim of this study was to investigate the efficacy of an antioxidant treatment (calcium disodium ethylenediaminetetracetic acid—EDTA) chelation therapy associated with a micronutrient complex in MS patients. A total of 20 MS patients and 20 healthy subjects, enrolled as a control group (CTR), were recruited. We measured the plasma ROS production and total antioxidant capacity (TAC) by a direct assessment using Electron Paramagnetic Resonance; activities of the antioxidant system (thiols’ redox status and enzymes); and the urinary presence of biomarkers of oxidative stress by immunoenzymatic assays. We also evaluated the levels of inflammation by plasmatic cytokines (TNF , IL-1 , and IL-6) and assessed the sICAM levels, as well as the nitric oxide (NO) catabolism and transthyretin (TTR) concentration. Comparing CTR and MS, in the latter ROS production, oxidative damage, inflammatory biomarkers, and NO metabolite concentrations results were significantly higher, while TAC was significantly lower. Treatment in MS induced significant (p < 0.05) down-regulating of pro-inflammatory sICAM1, TNF- , IL6, as well as biomarkers of lipid peroxidation and DNA damage production. The protective effect exhibited may occur by decreasing ROS production and increasing antioxidant capacity, turning into a more reduced thiols’ status.
2023
EDTA; neurotoxicity; thiols’ redox status; oxidative damage; cytokines; ROS; EPR; neurodegeneration
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/15046
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact