In heart failure, in addition to the renin-angiotensin-aldosterone system and sympathetic nervous system, the natriuretic peptide (NP) system plays a fundamental role among compensating mechanisms. The NPs undergo rapid enzymatic degradation that limits their vasorelaxant, natriuretic, and diuretic actions. Degradation of NPs is partially due to the action of neprilysin, which is a membrane-bound endopeptidase found in many tissues. This article summarizes recent findings on a new natriuretic peptide-enhancing drug and their implication for future pharmacological treatment of patients suffering from heart failure with reduced ejection fraction.

Therapeutic options of Angiotensin Receptor Neprilysin inhibitors (ARNis) in chronic heart failure with reduced ejection fraction: Beyond RAAS and sympathetic nervous system inhibition.

Volterrani M;
2016-01-01

Abstract

In heart failure, in addition to the renin-angiotensin-aldosterone system and sympathetic nervous system, the natriuretic peptide (NP) system plays a fundamental role among compensating mechanisms. The NPs undergo rapid enzymatic degradation that limits their vasorelaxant, natriuretic, and diuretic actions. Degradation of NPs is partially due to the action of neprilysin, which is a membrane-bound endopeptidase found in many tissues. This article summarizes recent findings on a new natriuretic peptide-enhancing drug and their implication for future pharmacological treatment of patients suffering from heart failure with reduced ejection fraction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/13673
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact