We previously profiled duodenal microbiome in active (a-), gluten-free diet (GFD) celiac disease (CD) patients and controls finding higher levels of the Proteobacterium Neisseria flavescens in a-CD patients than in the other two groups. Here, we investigate the oropharyngeal microbiome in CD patients and controls to evaluate whether this niche share microbial composition with the duodenum. We characterized by 16S rRNA gene sequencing the oropharyngeal microbiome in 14 a-CD, 22 GFD patients and 20 controls. Bacteroidetes, Proteobacteria and Firmicutes differed significantly between the three groups. In particular, Proteobacteria abounded in a-CD and Neisseria species mostly accounted for this abundance ( p < 0.001), whereas Bacteroidetes were more present in control and GFD microbiomes. Culture-based oropharyngeal microbiota analysis confirmed the greater abundance of Proteobacteria and of Neisseria species in a-CD. Microbial functions prediction indicated a greater metabolic potential for degradation of aminoacids, lipids and ketone bodies in a-CD microbiome than in control and GFD microbiomes, in which polysaccharide metabolism predominated. Our results suggest a continuum of a-CD microbial composition from mouth to duodenum. We may speculate that microbiome characterization in the oropharynx, which is a less invasive sampling than the duodenum, could contribute to investigate the role of dysbiosis in CD pathogenesis.
Oropharyngeal microbiome evaluation highlights Neisseria abundance in active celiac patients
D'Argenio, Valeria
;
2018-01-01
Abstract
We previously profiled duodenal microbiome in active (a-), gluten-free diet (GFD) celiac disease (CD) patients and controls finding higher levels of the Proteobacterium Neisseria flavescens in a-CD patients than in the other two groups. Here, we investigate the oropharyngeal microbiome in CD patients and controls to evaluate whether this niche share microbial composition with the duodenum. We characterized by 16S rRNA gene sequencing the oropharyngeal microbiome in 14 a-CD, 22 GFD patients and 20 controls. Bacteroidetes, Proteobacteria and Firmicutes differed significantly between the three groups. In particular, Proteobacteria abounded in a-CD and Neisseria species mostly accounted for this abundance ( p < 0.001), whereas Bacteroidetes were more present in control and GFD microbiomes. Culture-based oropharyngeal microbiota analysis confirmed the greater abundance of Proteobacteria and of Neisseria species in a-CD. Microbial functions prediction indicated a greater metabolic potential for degradation of aminoacids, lipids and ketone bodies in a-CD microbiome than in control and GFD microbiomes, in which polysaccharide metabolism predominated. Our results suggest a continuum of a-CD microbial composition from mouth to duodenum. We may speculate that microbiome characterization in the oropharynx, which is a less invasive sampling than the duodenum, could contribute to investigate the role of dysbiosis in CD pathogenesis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.