The oncogenic gammaherpesvirus Epstein-Barr virus (EBV) immortalizes in vitro B lymphocytes into lymphoblastoid cell lines (LCLs), a model that gives the opportunity to explore the molecular mechanisms driving viral tumorigenesis. In this study, we addressed the potential of quercetin, a widely distributed flavonoid displaying antioxidant, anti-inflammatory, and anti-cancer properties, in preventing EBV-driven B cell immortalization. The results obtained indicated that quercetin inhibited thectivation of signal transducer and activator of transcription 3 (STAT3) induced by EBV infection and reduced molecules such as interleukin-6 (IL-6) and reactive oxidative species (ROS) known to be essential for the immortalization process. Moreover, we found that quercetin promoted autophagy and counteracted the accumulation of sequestosome1/p62 (SQSTM1/p62), ultimately leading to the prevention of B cell immortalization. These findings suggest that quercetin may have the potential to be used to counteract EBV-driven lymphomagenesis, especially if its stability is improved.

Quercetin Interrupts the Positive Feedback Loop Between STAT3 and IL-6, Promotes Autophagy, and Reduces ROS, Preventing EBV-Driven B Cell Immortalization

Granato, Marisa;
2019-01-01

Abstract

The oncogenic gammaherpesvirus Epstein-Barr virus (EBV) immortalizes in vitro B lymphocytes into lymphoblastoid cell lines (LCLs), a model that gives the opportunity to explore the molecular mechanisms driving viral tumorigenesis. In this study, we addressed the potential of quercetin, a widely distributed flavonoid displaying antioxidant, anti-inflammatory, and anti-cancer properties, in preventing EBV-driven B cell immortalization. The results obtained indicated that quercetin inhibited thectivation of signal transducer and activator of transcription 3 (STAT3) induced by EBV infection and reduced molecules such as interleukin-6 (IL-6) and reactive oxidative species (ROS) known to be essential for the immortalization process. Moreover, we found that quercetin promoted autophagy and counteracted the accumulation of sequestosome1/p62 (SQSTM1/p62), ultimately leading to the prevention of B cell immortalization. These findings suggest that quercetin may have the potential to be used to counteract EBV-driven lymphomagenesis, especially if its stability is improved.
2019
Epstein–Barr virus (EBV), STAT3
IL-6
LCLs
ROS
SQSTM1/p62
autophagy
quercetin
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/13226
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 25
social impact