Extracellular ATP (eATP), the most abundant among nucleotides, can act as a mediator during inflammatory responses by binding to plasmamembrane P2 purinergic receptors, which are widely expressed on cells of the immune system. eATP is generally considered as a classical danger signal, which stimulates immune responses in the presence of tissue damage. Converging evidence from several studies using murine models of chronic inflammation have supported this hypothesis; however, the role of eATP in the regulation of human immune function appears to be more complex. Chronic stimulation with micromolar eATP concentrations inhibits the proliferation of T and NK lymphocytes and enhances the capacity of dendritic cells to promote tolerance. The effect of eATP depends on multiple factors, such as the extent of stimulation, eATP concentration, presence/absence of other mediators in the microenvironment, and pattern of P2 receptor engagement. Small but significant differences in the pattern of P2 receptor expression in mice and humans confer the diverse capacities of ATP in regulating the immune response. Such diversity, which is often overlooked, should therefore be carefully considered when evaluating the role of eATP in human inflammatory and autoimmune diseases. (Blood. 2012;120(3):511-518)

Immunoregulation through extracellular nucleotides

Gorini, Stefania;
2012-01-01

Abstract

Extracellular ATP (eATP), the most abundant among nucleotides, can act as a mediator during inflammatory responses by binding to plasmamembrane P2 purinergic receptors, which are widely expressed on cells of the immune system. eATP is generally considered as a classical danger signal, which stimulates immune responses in the presence of tissue damage. Converging evidence from several studies using murine models of chronic inflammation have supported this hypothesis; however, the role of eATP in the regulation of human immune function appears to be more complex. Chronic stimulation with micromolar eATP concentrations inhibits the proliferation of T and NK lymphocytes and enhances the capacity of dendritic cells to promote tolerance. The effect of eATP depends on multiple factors, such as the extent of stimulation, eATP concentration, presence/absence of other mediators in the microenvironment, and pattern of P2 receptor engagement. Small but significant differences in the pattern of P2 receptor expression in mice and humans confer the diverse capacities of ATP in regulating the immune response. Such diversity, which is often overlooked, should therefore be carefully considered when evaluating the role of eATP in human inflammatory and autoimmune diseases. (Blood. 2012;120(3):511-518)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/12032
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 112
  • ???jsp.display-item.citation.isi??? 108
social impact