Obesity and its associated comorbidities have become pandemic, and challenge the global healthcare system. Lifestyle changes, nutritional interventions and phamaceuticals should be differently combined in a personalized strategy to tackle such a public health burden. Altered brown adipose tissue (BAT) function contributes to the pathophysiology of obesity and glucose metabolism dysfunctions. BAT thermogenic activity burns glucose and fatty acids to produce heat through uncoupled respiration, and can dissipate the excessive calorie intake, reduce glycemia and circulate fatty acids released from white adipose tissue. Thus, BAT activity is expected to contribute to whole body energy homeostasis and protect against obesity, diabetes and alterations in lipid profile. To date, pharmacological therapies aimed at activating brown fat have failed in clinical trials, due to cardiovascular side effects or scarce efficacy. On the other hand, several studies have identified plant-derived chemical compounds capable of stimulating BAT thermogenesis in animal models, suggesting the translational applications of dietary supplements to fight adipose tissue dysfunctions. This review describes several nutraceuticals with thermogenic properties and provides indications, at a molecular level, of the regulation of the adipocyte thermogenesis by the mentioned phytochemicals.
Nutraceuticals in Brown Adipose Tissue Activation
Armani, Andrea
;Feraco, Alessandra;Camajani, Elisabetta;Gorini, Stefania;Lombardo, Mauro;Caprio, Massimiliano
2022-01-01
Abstract
Obesity and its associated comorbidities have become pandemic, and challenge the global healthcare system. Lifestyle changes, nutritional interventions and phamaceuticals should be differently combined in a personalized strategy to tackle such a public health burden. Altered brown adipose tissue (BAT) function contributes to the pathophysiology of obesity and glucose metabolism dysfunctions. BAT thermogenic activity burns glucose and fatty acids to produce heat through uncoupled respiration, and can dissipate the excessive calorie intake, reduce glycemia and circulate fatty acids released from white adipose tissue. Thus, BAT activity is expected to contribute to whole body energy homeostasis and protect against obesity, diabetes and alterations in lipid profile. To date, pharmacological therapies aimed at activating brown fat have failed in clinical trials, due to cardiovascular side effects or scarce efficacy. On the other hand, several studies have identified plant-derived chemical compounds capable of stimulating BAT thermogenesis in animal models, suggesting the translational applications of dietary supplements to fight adipose tissue dysfunctions. This review describes several nutraceuticals with thermogenic properties and provides indications, at a molecular level, of the regulation of the adipocyte thermogenesis by the mentioned phytochemicals.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.