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Since excessive sugar consumption has been related to the development of chronic

metabolic diseases prevalent in the western world, the use of sweeteners has gradually

increased worldwide over the last few years. Although low- and non-calorie sweeteners

may represent a valuable tool to reduce calorie intake and prevent weight gain, studies

investigating the safety and efficacy of these compounds in the short- and long-term

period are scarce and controversial. Therefore, future studies will need to elucidate

the potential beneficial and/or detrimental effects of different types of sweeteners on

metabolic health (energy balance, appetite, body weight, cardiometabolic risk factors)

in healthy subjects and patients with diabetes, obesity and metabolic syndrome. In this

regard, the impact of different sweeteners on central nervous system, gut hormones

and gut microbiota is important, given the strong implications that changes in such

systems may have for human health. The aim of this narrative review is to summarize

the current evidence for the neuroendocrine and metabolic effects of sweeteners, as

well as their impact on gut microbiota. Finally, we briefly discuss the advantages of the

use of sweeteners in the context of very-low calorie ketogenic diets.

Keywords: body weight, microbiota, safety, obesity, diabetes, sugar, metabolic health, VLCKD

INTRODUCTION

On the basis of their energy content, sweeteners can be classified into calorie, low-calorie and
non-calorie compounds. Calorie-sweeteners include natural sugars (1), such as sucrose, glucose,
fructose, maltose, lactose, and trehalose. They are mainly present in fruits, honey, milk, dairy
products, and mushrooms (2) and their caloric values is on average 4 kcal/g. Their sweetening
power is measured in relation to sucrose, which is considered as a reference sugar (3). Low
calorie and non-calorie sweeteners provide no or few calories and are characterized by a high
sweetness taste. Low-calorie sweeteners include polyols or sugar alcohols, which are low-digestible
compounds obtained from the replacement of an aldehyde group with a hydroxyl one (4). The
most common polyols are sorbitol, xylitol, maltitol, mannitol, erythritol, isomalt, and lactitol; they
are naturally found in fruits, vegetables, and mushrooms (5). Non-calorie sweeteners are mostly
obtained by chemical synthesis (except Stevia rebaudiana), and are characterized by minimal or
absent nutritional content (3). They include saccharin, aspartame, acesulfame-k, and sucralose (6).
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In the last few decades, intake of sugar (free and added
sugars) is dramatically increased, especially in western world (7).
High intake of sugars has been related to the development of
several diseases, including obesity, type 2 diabetes, cardiovascular
disease, non-alcoholic fatty liver disease (8–10), as well as
tooth decay (11), neurocognitive diseases (12), and chronic
inflammatory disorders (13).

In 2015, the World Health Organization (WHO)
recommended the consumption of free sugars below 10%
of total daily energy intake. However, a further reduction in free
sugars intake below 5% of total energy intake has been strongly
suggested (14). For a healthy adult, 5% of total energy intake
is equivalent to ∼25 g of sugar per day. Free sugars include all
sugars added to foods by the manufacturer, as well as sugars
naturally present in non-intact fruit and vegetables (i.e., juiced
or pureed). Free sugars do not include sugars naturally present
in intact fruit, vegetables, and dairy products (15).

With regard to children and adolescents, a scientific statement
published by the American Heart Association (AHA) in 2017
recommends <25 g of added sugars per day, although added
sugar should not be included in the diet for children <2 years
of age (16). According to a recent study, in UK added or free
sugar intake has been estimated between 7% and 13% of total
energy intake, respectively, and it is higher in children than
in adults (17). The prevalence of obesity and its comorbidities
(such as type 2 diabetes, cardiovascular diseases and cancer) has
dramatically increased (18) and several governments started to
promote policies aimed to encourage a healthy diet and lifestyle
(19). In 2011 Denmark introduced a tax on saturated fat, which
was repealed in 2012, since it demonstrated a positive but not
consistent effect on health (20). In the same year, Hungary added
levy on foods with high fat, sugar, salt and caffeine content; soft
drinks and alcohols were also taxed. In 2012, France introduced
a tax on sweetened beverages (21, 22). In United States, where
sweetened beverages consumption is still high, taxes on sugar-
sweetened beverages have been approved since 2014 (23, 24).
In California, the first state which approved the tax, a 21%
reduction of sweetened beverage consumption was reported (25)
and a positive impact on health care cost savings was observed
(26). Since 2016, UK approved several policies in order to
reduce childhood obesity, including the “sugar tax” on sweetened
beverages, called the Soft Drinks Industry Levy, which became
effective in April 2018 (27). In Hungary, sugar tax resulted in
a qualitative improvement and reformulation of food products
(28, 29).

In addition, nutrition labeling has been encouraged in order
to help consumers to choose healthy foods. In 2013, the Food
Standards Agency in the UK promoted a color coding in labeling
system. In this color coding system, red, yellow, and green
labels correspond to high, medium, and low percentages of fat,
salt, sugar, and total energy present in the product, respectively
(30). In this regard, some studies found that front-of-package
nutrition labels can readily convey to consumers key information
on the nutritional profile of different food products, showing
that green labels are associated with the highest healthfulness
perception of these products (31). However, Vasiljevic et al. found
that nutritional labels of snack foods had limited impact on

perceptions of healthiness and no effects on the snack choice,
whereas emoticon labels had stronger effects on perceptions of
taste and healthfulness of snacks compared to color labels (32).

A recent Cochrane Review evaluated the effects exerted in
the general population by the taxation of unprocessed sugar or
sugar added foods in terms of consumption of these foods and
changes in prevalence and incidence of overweight, obesity, and
other diet-related diseases (33). The authors concluded that there
is still limited (and low-quality) evidence to support that taxing
unprocessed sugar or sugar added foods has a significant impact
on reducing their consumption and preventing overweight,
obesity or other adverse health outcomes (33). Therefore, future
studies are needed to draw concrete conclusions in this direction.
Notably, an article by Fernandez and Raine (34) recently
reviewed the impact of sugar-sweetened beverage taxation
on obesity, concluding that current evidence is still limited.
Importantly, authors suggest that sugar-sweetened beverage
taxation will likely fail to have a significant impact on the
prevalence of obesity and associated non-communicable diseases
until this policy will not be associated with interventions aimed to
increase access to non-sweetened beverages, educate consumers
about healthy beverage alternatives and explore taxation of other
beverages and non-nutritive foods (34).

To address the growing health issue of obesity, sweetener
consumption has gradually increased over the last years (35–
38). Indeed, when used judiciously, non-calorie sweeteners may
facilitate reductions in the intake of added sugars, leading
to decreased total energy, weight loss, prevention of weight
gain and/or subsequent beneficial effects on related metabolic
parameters (38). Nonetheless, these potential benefits may
not be fully achieved without reductions in total food intake
and/or in presence of a compensatory increase in energy
intake from other sources (38). In addition, animal and human
studies have reported controversial results on the safety of
non-calorie sweeteners (39). Besides their potential to reduce
daily calorie content, non-calorie sweeteners were reported to
potentially display detrimental metabolic (weight gain) (40)
and neuroendocrine (addiction) effects (41). Conversely, some
intervention studies reported that consumption of non-calorie
sweeteners is associated with weight loss and improvedmetabolic
parameters (42, 43). Despite a growing use of non-calorie
sweeteners, which is gradually increasing in both healthy and
obese/overweight individuals, there is indeed a knowledge gap
regarding their safety and efficacy in the long term-period.
Therefore, there is an urgent need to update the current positions
from international agencies on the use of these compounds.

We will review here the metabolic and neuroendocrine
properties of the most commonly used low-calorie (polyols) and
non-calorie sweeteners, along with their safety profile and main
use in food industry.

LOW-CALORIE SWEETENERS (POLYOLS
OR SUGAR ALCOHOLS)

Sugar alcohols (also referred to as polyols) are characterized
by a lower calorie content (2 to 4 kcal/g) (44) than sucrose
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TABLE 1 | Comparative profile of the main calorie sweeteners and low-calorie

sweetenersa.

Sweetener Glycemic

indexb
Caloric value

(kcal/g)c
Sweetening

powerd
EFSA

codee

SUGARS

Glucose 100 4 0.75

Fructose 23 4 1.7 –

Sucrose 65 4 1

Lactose 45 4 0.15

Maltose 105 4 0.3

POLYOLS (SUGAR ALCOHOLS)

Erythritol 0 0.2 0.6–0.8 E-968

Sorbitol 9 2.7 0.5–0.7 E-420

Mannitol 0 1.6 0.5–0.7 E-421

Xylitol 13 2.4 1 E-967

CALORIE NATURAL SWEETENERS

Trehalose 45–50 3.6 0.5–0.7 –

Thaumatin 0 4 2,000–2,500 E-957

aSource (45, 46).

EFSA, European Food Safety Authority.
bGlycemic index (GI) represents the blood glucose response measured as area under

the curve (AUC) in response to a test food consumed by an individual under standard

conditions, expressed as a percentage of the AUC after consumption of a reference food

(usually 50 g glucose) consumed by the same individual on a different day. According to

the most commonly used GI classification, foods are categorized as having a low (≤55),

medium (55–69), or high GI (≥70) (47).
cSource (1, 48).
dSource (45).
eSource (49).

(Table 1) (45). Low amounts of polyols are naturally present in
vegetables, mushrooms and fruits (melon, peach, apple, pear,
apricot), but also in oat (50, 51). They include hydrogenated
mono-, di-, oligo-, and polysaccharides (45) and are mainly used
in “sugar-free” products, sweets, and chewing gums (52). Polyols
are stable compounds at high temperatures and do not interfere
in the Maillard reaction (53). The late stages of Maillard reaction
lead to the generation of the so-called AGEs (also referred to
as “advanced glycation end-products”) in foods and biological
systems (54, 55). Of note, AGEs contribute to the development
of micro- and macrovascular complications of diabetes (56–
58), by inducing oxidative stress and activating inflammatory
pathways (59, 60) Polyols do not affect glucose homeostasis
(61, 62). Also, polyols have long been suggested as valid sugar
substitutes able to exert a beneficial role on insulin resistance
and glucose control in patients with type 2 diabetes and/or
metabolic syndrome. Nonetheless, robust evidence on the long-
term effects of polyols in terms of glucose control and chronic
complications in diabetic patients is still scarce and inconclusive
(45). Interestingly, most of these compounds do not undergo
fermentation by oral bacteria flora (63); therefore, polyols can
reduce the risk of tooth decay because they represent a poor
source of energy to resident bacteria of the oral cavity and do not
create an acidic environment (45, 64).

Polyols increase saccharolytic anaerobic and aciduric bacteria
in the colon and give rise to the production of short-chain

fatty acids which play a key role in the maintenance of the
intestinal epithelial barrier (45). Although acceptable daily intake
(ADI) dose has not been established for polyol increased polyol
consumption may cause gastrointestinal discomfort and laxative
effects in healthy individuals (61, 64). The European Union
legislation approved the use of seven different polyols, including
erythritol, isomalt, lactitol, maltitol, mannitol, sorbitol, and
xylitol (49).

Herein, we summarize the main properties of the polyols that
are most commonly used in food and beverage industry, also
discussing their potential impact on human health.

Sorbitol (E-420)
Sorbitol provides 2.6 kcal/g. Sorbitol is naturally present in
grapes, prunes, cherries, peaches, apples, pears, and fruit juices
(65). Sorbitol is poorly absorbed in the small intestine, while in
the colon it is converted by gut microbiota into gases and short-
chain fatty acids, providing energy (66). Sorbitol has osmotic
effects and it acts as a laxative when ingested in high doses (20–
50 g) (67). In addition, chronic ingestion of sorbitol through
chewing gums can cause increased intestinal motility regardless
of its osmotic effect (68). Therefore, sorbitol use should be
avoided by individuals with irritable bowel syndrome (68). In
1993 FDA approved sorbitol use as Generally Recognized As Safe
(GRAS) (69).

Mannitol (E-421)
Mannitol is naturally present in mushrooms, marine algae,
strawberries, onions, and pumpkins (70). Only 25% of ingested
mannitol is absorbed in the gut, whereas the remaining part is
excreted in the urine. In the gut, mannitol is slowly fermented
(45). Mannitol is virtually inert and does not interfere with
pharmacological compounds. Due to this reason, it is used also in
hygiene products, drug filler and intravenous fluid solutions (53).
Moreover, the osmotic diuretic properties of mannitol account
for its use as intravenous solution in the management of elevated
intracranial pressure and cerebral edema (71).

Xylitol (E-967)
Xylitol is a natural sweetener found in fruits, vegetables and
oats, and it is extracted from birch trees (5). Due to its low
caloric content (2.5 kcal/g) and low glycemic index, xylitol
has long been suggested as a valid alternative to glucose and
sucrose in patients with diabetes (72). In a pre-clinical study, 4
week administration of xylitol at high doses has been shown to
improve glucose tolerance in rats (73). Conversely, a randomized,
placebo-controlled, crossover trial conducted in lean and obese
volunteers showed that acute xylitol and erythritol ingestion did
not significantly affect circulating levels of glucose and insulin,
despite being able to stimulate the secretion of the gut hormones
cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1).
Of note, the marked increase in CCK and GLP-1 levels was
accompanied by a significant slowing in gastric emptying (74).
These findings are interesting and do not exclude that chronic
ingestion of these sweeteners may play a role in the regulation of
glucose homeostasis. Also, the increase in GLP-1 levels may have
relevant clinical implications beyond the insulinotropic action
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of GLP-1, considering the well-known role exerted by GLP-1
receptor agonists in the reduction of cardiovascular risk among
diabetic patients, along with the anorexigenic properties of GLP-
1 and its analogs (75–77). Remarkably, CCK has also been shown
to induce short-term satiety and to play a role in the regulation
of insulin secretion and overall β-cell function and survival,
displaying complementary biological actions with those exerted
by GLP-1 (78).

Erythritol (E-968)
Erythritol is a polyol contained in fruits (e.g., melon, peach), wine
and beer (79). It is chemically derived from the fermentation of
natural sugars (e.g., glucose and sucrose) by Trichosporonoides
megachiliensis (80). Its sweetening power corresponds to 60–
80% of that of sucrose (81). Erythritol is poorly absorbed in
the jejunum and is excreted unmodified in the urine (82).
Only a small fraction of erythritol undergoes gut fermentation.
Therefore, an excessive consumption of erythritol can be
associated with laxative effects (83). Gastrointestinal discomfort
is generally observed when erythritol intake is >1,000 mg/kg
of body weight (79). Erythritol intake does not appear to have
detrimental effects on glucose control and its use is generally
deemed as safe in patients with diabetes (84).

Similarly to other polyols, erythritol does not participate
in Maillard-type reactions and, therefore, does not cause the
production of AGEs. In addition, by acting as a scavenger
for hydroxyl radicals, erythritol exerts anti-oxidant and
endothelium-protective properties (83). Erythritol provides
a negligible amount of energy (0.2 kcal/g) (64). Thus, it is
commonly used as part of the dietary patterns recommended
for people with obesity (85). Due to its sweet taste and high
digestive tolerance, and the fact that it is virtually calorie-free
and non-cariogenic, erythritol is widely used in the food and
beverage industry.

NON-CALORIE SWEETENERS

Non-calorie sweeteners (also known as artificial sweeteners or
non-nutritive sweeteners) are defined as compounds with high
sweetening power. Although most of them do not provide
calories upon ingestion, some of these compounds (such as
aspartame and stevia rebaudiana) have a measurable caloric
value that is considered negligible at the doses commonly used
by humans.

Non-calorie sweeteners can be of synthetic or natural origin
(Table 2).

Stevia Rebaudiana (E-960)
Stevia rebaudiana has a natural origin. It is commonly called
Stevia and derives from a plant that grows in South America (89).
Stevia contains steviol glycosides, stevioside, and rebaudioside A,
that account for its sweet taste, and other minor glycosides, such
as rebaudioside B, rebaudioside C, rebaudioside D, rebaudioside
E, rebaudioside F, dulcoside A, rubusoside, and steviolbioside.
Stevia also contains a complex of terpenes, tannins, sterols,
vitamins, carotenes, flavonoids, and other microelements (90).
After ingestion, the steviol glycosides contained in Stevia are

TABLE 2 | Comparative profile of the main non-calorie sweeteners approved by

the European Food Safety Authority.

Sweetener Brand

Namesa
ADI (mg/kg body

weight/day)b
Sweetening

powerc
EFSA

coded

Acesulfame-K Sweet One

Sunett

15 200 E950

Aspartame Nutrasweet

Equal

40 200 E951

Saccharin Sweet and

Low

Sweet Twin

Necta Sweet

5 300-500 E954

Sucralose Splenda 5 600 E955

Steviol glycosides Truvia 4 200-300 E960

ADI, Acceptable daily intake.

EFSA, European Food Safety Authority.
aSource (86, 87).
bSource (86, 87).
cSource (86, 87).
dSource (88).

not digested in the upper gastrointestinal tract (91), but they are
metabolized by bacteria of the Bacteroidaceae family in the colon,
resulting in the production of steviol (92), which is subsequently
processed in the liver and converted into steviol glucuronide (93).
Energy from fermentation of steviol glycosides (usually assessed
as 2 kcal/g) is low (92).

Stevia has a strong sweetening power, 200- to 400-fold higher
than that of sucrose (94). Its maximal recommended daily
intake is 4 mg/kg, and it is considered unsafe at higher doses
(EU regulation 1129/2011) (95). This quantity corresponds to
approximately nine tablets per day. Considering that stevia is
200 to 400 times sweeter than sugar, it is extremely unlikely
for an individual to ingest the maximum dose of 4 mg/kg
over a 24 h period. Stevia offers several advantages over other
non-calorie sucrose substitutes. In vitro, stevia displayed anti-
viral effects (96), immunomodulatory activity (97) and anti-
inflammatory properties, through inhibition of NF-κB and
pro-inflammatory cytokines expression (98). In rats, stevioside
showed antihyperglycemic effects through the enhancement
of the first-phase of insulin secretion with a concomitant
suppression of glucagon levels; stevia also caused a pronounced
reduction of both systolic and diastolic blood pressure in
rats (99).

Intriguingly, pre-clinical evidence suggests that steviol
glycoside derivatives can exert antiproliferative properties in
several cancer cell lines, including pancreatic (100), breast (101),
and gastric cancer (102) cell lines.

Aspartame (E-951)
Aspartame was discovered in 1965 (103). It provides 4 kcal/g, but
it is included in the group of non-calorie sweeteners, due to its
strong sweetening power (104). It is composed by phenylalanine,
aspartic acid and methanol (105). Given the high content in
phenylalanine, aspartame use is contraindicated in individuals
with phenylketonuria, a rare autosomal recessive inborn error
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of metabolism characterized by a decreased metabolism of the
amino acid phenylalanine (106).

Although the use of aspartame has been approved in
United States since 1974 (107) and in Europe since 1994 (108),
its safety is still debated. After several studies performed during
the 1970s and the 1980s (109–112), a long term study was carried
out in rats to assess its carcinogenic potential (113). Rodents
treated with different dosages of aspartame until their natural
death showed an increase in the frequencies of lymphomas
and leukemias, carcinomas of the renal pelvis and ureter, and
schwannomas (114). These results were confirmed even at doses
of 20mg/kg body weight, which are lower than the recommended
maximum daily intake in Europe and in United States (115).
The potential carcinogenicity of aspartame was first attributed
to methanol, that is converted into formaldehyde and then
into formic acid both in rats and humans (116). Based on
data obtained from different studies, the European Food Safety
Authority (EFSA) was called in 2013 to re-evaluate the safety
of aspartame on human health. EFSA concluded that aspartame
is safe at a dose of 40 mg/kg body weight/day (117). However,
aspartame safety on human health is still under debate; in fact, a
recent study highlighted several important shortcomings in the
EFSA document (118).

Acesulfame-K (E-950)
Acesulfame-K is a potassium salt of 6-methyl-123-axanthiazine-
4 (3H)-one 2,2 –dioxide. Its sweetening power is 120-fold higher
than sucrose (119). Acesulfame-K does not provide calories.
Since it is not catabolized in humans, acesulfame-K does not
affect serum potassium levels despite its potassium content
(50). The acceptable daily intake (ADI) of acesulfame-K is 15
mg/kg body weight. It is used in various sweet foods and
beverages (119).

Hydrolysis of acesulfame-K gives rise to acetoacetamide,
a degradation product that can be toxic if produced in
large amounts (120). Acesulfame-K carcinogenicity has
been investigated in rats, where no carcinogenic effects
were observed (121). The majority of studies noted that
it displays neutral effects on body weight or glucose
tolerance (122, 123).

Sucralose (E-955)
Sucralose is derived from sucrose after replacement of three
chloride atoms with three hydroxyl groups (124). It was
discovered in 1976 and has a sweetening power 450- to 650-
fold higher than sucrose. The ADI of sucralose is 5 mg/kg
body weight in United States (125) and 15 mg/kg body weight
in Europe (126). Only up to 11–27% of sucralose is absorbed
in the gastrointestinal tract, while the remaining undergoes
intestinal excretion unmodified (127). Sucralose is stable during
baking and it is considered safe in beverages and foods that
require cooking (128). Sucralose consumption does not affect
glycemic control or insulin sensitivity in healthy individuals
when administered alone, whereas its use in combination
with carbohydrates showed a negative impact on glucose
metabolism (129).

Several studies in vitro (130, 131) and in vivo (132, 133)
demonstrated that sucralose is not a carcinogenic compound.
Only two studies noted a positive relationship between sucralose
and mutagenic activity. In one, two human colon cancer cell
lines (Caco-2 and HT-29) and one human embryonic kidney cell
line (HEK-293) were exposed to very high doses of sweetener
solutions for up to 24, 48, and 72 h, leading to cell alterations
and DNA fragmentation (134). In the other, mouse lymphoma
cells showed doubtful results when exposed to 10 mg/ml
sucralose concentrations (131). However, in both studies very
high sucralose concentrations were used. Recently, Soffritti et al.
raised questions regarding sucralose safety (135), although EFSA
revaluation judged that these results were not supported by the
available data (136).

Saccharin (E-954)
Saccharin is a non-calorie sweetener derived from 1,2-
benzoisothiazol 3-(2H). Its sweetening potency is almost
300-fold higher than that of sucrose. Saccharin has an unpleasant
bitter or metallic taste (106). Experiments conducted in the
1980s have showed a link between saccharin and an increased
incidence of bladder cancer in a rat strain genetically susceptible
to bladder tumors, when exposed to 5% saccharin in the diet
for 52 weeks (137). Nonetheless, saccharin generates a urinary
precipitate mainly composed of calcium phosphate, which can
exert cytotoxic effects on urothelial cells of rats and induce mild
hyperplasia (138). However, very high saccharin concentrations
were tested in animal models, if compared to the doses
commonly ingested by humans (139). With regard to metabolic
parameters, a recent study evaluated the administration of
saccharin (at different doses, namely: 2.5, 5, and 10 mg/kg) in
male Wistar rats (140). An increased body weight was noted
in rats after 60 and 120 days of 5 mg/kg saccharin treatment.
Authors also observed an increase in glucose, uric acid and
creatinine levels, as well as in oxidative status in the liver of
saccharin-treated rats, suggesting that saccharin may impair
glucose homeostasis, induce obesity and lead to impairments in
kidney and liver function (140). The World Health Organization
and the EU Scientific Committee for Food declared saccharine
as safe up to the approved daily intake doses (5 mg/kg body
weight) (53). Nowdays, saccharine is commonly used in soft
drinks, baked foods, jams, canned fruit, candy, dessert toppings,
and chewing gum (141).

IMPACT OF SWEETENERS ON CENTRAL
NERVOUS SYSTEM AND METABOLIC
OUTCOMES

The consequences of low-calorie and non-calorie sweeteners
on daily food consumption and eating behavior are still
controversial. Eating causes an amplification of dopamine release
in the nucleus accumbens, similar to what occurs upon substance
abuse (142). However, the ingestion of palatable foods causes
an increase in dopamine production greater than standard food
(143). Given that palatable foods stimulate the same neural
pathways involved in drug addiction, it has been suggested that
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an excessive sugar intake can lead to addiction. Moreover, after
long-term consumption of sugar, withdrawal symptoms have
been described in rats, similarly to what has been observed
in morphine and nicotine dependence (144). Food addiction
leads to changes in the expression of dopamine receptors (145).
Neuroimaging studies revealed that obese individuals exhibit
lower dopamine sensitivity in nucleus accumbens accompanied
by a decrease in dopamine D2 receptor expression, similar
to what has been observed in drug-addicted subjects (146–
149). Interestingly, dopamine D2 receptor expression is inversely
related to bodymass index in obese patients (150). These findings
suggest that chronic exposure to sugar decreases dopamine-D2
receptor expression. Furthermore, it has been hypothesized that
obese subjects respond to dopamine deficiency by overeating
palatable foods (151).

Several brain regions are involved in food-reward, namely:
lateral hypothalamic area (LHA), ventral tegmental area (VTA),
nucleus accumbens (NAc) and prefrontal cortex (PFC). Several
neurotransmitters (GABA, glutamate and opioids) are involved
in different aspects of reward in the above-mentioned brain
regions (152, 153). In particular, the dopaminergic circuitry
from LHA to VTA and from VTA to the NAc is involved
in hedonic processes (“liking”), reinforcement (“learning”),
and motivation (“wanting”) (154), while acetylcholine is
involved in the aversive aspects of withdrawal (155). During
withdrawal state, extracellular dopamine decreases in the
accumbens, while acetylcholine is released from accumbens
neurons. Intermittent or excessive sugar consumption induces
neurochemical modifications, mimicking the effects of opioids
(144). Food choice and food intake are physiologically regulated
by metabolic and neural signals. In particular, metabolic signals
act as nutritional status sensors and mediate the ingestion of a
sufficient amount of energy. On the other hand, sensory signals
regulate food choice and are linked to subsequent metabolic
adaptation, resulting in conditioned responses to these foods
(156). The combination of learned responses with metabolic
and sensory signals results in a specific pattern of food intake.
The responses to sensory inputs, such as taste, texture, and
sight of food, include consecutive preabsorptive physiological
responses, which are collectively referred to as cephalic phase
responses. Such digestive preparation confers to the body the
ability to anticipate the particular challenge a food poses for
maintaining energy homeostasis (157). Among these responses,
the cephalic-phase insulin response, elicited by sugars, enhances
glucose tolerance in humans (158–160).

Although replacing calorie with non-calorie sweeteners
definitely reduces the energy density of foods and beverages,
this does not necessarily translate into metabolic advantages
and improved health status. It has been hypothesized that
daily intake of non-calorie sweeteners can “trick” the brain by
encouraging sugar craving and addiction (161). Indeed, lack
of calories generally abolishes the post-ingestive food reward
mediated by the hypothalamus (162). In keeping with this, it
has been suggested that uncoupling sweet taste from energy
causes progressive weakening of conditioned responses to sweet
taste (163). As previously mentioned, sweet taste is able to
evoke physiological adaptations which play an important role

in the finely-tuned regulation of energy homeostasis, by sensing
the presence of caloric nutrients in the gut and facilitating
the absorption and subsequent utilization of energy. When
sweeteners are not associated with caloric intake, their ability to
sense energy is altered, with a subsequent reduced ability to use
energy and a mitigated activation of the peripheral and central
pathways that promote the feeling of satiety (163).

It is also known that non-calorie sweeteners evoke different
brain responses compared to calorie sugars. In particular,
sucralose is known to display reduced ability to activate midbrain
areas related to reward, including LHA, VTA, and NAc (164).
Indeed, given the critical role of melanin-concentrating hormone
(MCH) neurons in the LHA in establishing nutrient preference,
a preclinical study showed that sucrose activated MCH neurons,
resulting in dopamine release (DA). By contrast, sucralose was
able to induce DA release in mice only in the presence of
light stimulation, which led to the activation of MCH neurons.
These findings suggest that non-calorie sweeteners require
additional stimuli to obtain the same rewarding effect of sucrose
(Figure 1) (165).

Significant controversy exists over the effects of low-calorie
sweeteners on metabolic health. Studies conducted on rodents
(166) and humans reported a positive association of low-calorie
sweetener consumption with weight gain and/or diabetes (167–
169), other studies a positive association with lower BMI and
weight loss (170, 171), in other cases their use was not related
to metabolic parameters (42, 43). Such heterogeneity is probably
due to methodological limitations of some of these studies (172).

A recently published study shed some light on the controversy
regarding the effects of low- and non-calorie sweeteners on
metabolic health (129). Authors reported that consumption of
sucralose was able to rapidly impair glucose metabolism and
brain response to sweet taste in healthy subjects only when
administered in the presence of carbohydrates. In fact, insulin
sensitivity as well as neural responses to sugar were not altered
by sucralose or carbohydrate alone. Notably, the combined effect
of sucralose and carbohydrates was even more pronounced
in adolescents, who showed a dramatic increase in insulin
resistance measured by the Homeostatic Model Assessment for
Insulin Resistance index (HOMA-IR). These findings refute
the “sweet uncoupling hypothesis,” which is based on the
concept that uncoupling sweet taste from caloric content could
determine metabolic dysfunctions and reduce the potency of
sweet taste (129).

These data may help explaining the obesogenic potential
of low-calorie sweeteners in the context of western diets,
especially considering the frequent use of “diet drinks,”
often containing non-calorie sweeteners, associated with
carbohydrates-rich meals.

EFFECTS OF SWEETENERS ON GUT
HORMONES

The sweet taste perception begins with the activation of taste
receptors of the tongue, which are located within the taste buds of
lingual papillae (173). Taste receptors include G protein-coupled
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FIGURE 1 | Brain reward circuitry involved in central effects of sweeteners. The dopaminergic pathway is strictly involved in hedonic processes (“liking”), reinforcement

(“learning”), and motivation (“wanting”). Midbrain dopaminergic circuits include Lateral Hypothalamus (LHA), Ventral Tegmental Area (VTA), and Nucleus Accumbens

(NAc). Dopamine release is driven by orexin (ORX) peptides and melanin-concentrating hormone (MCH) secreted by LHA. In particular, ORX and MCH neurons from

LHA project to VTA, where Orx peptides and MCH mediate the activation of dopamine (DA) neurons and increase the release of DA in projection areas such as the

NAc. It has been established that dopamine reward pathway response induced by caloric sweeteners consumption, such as sucrose, is greater compared to

non-calorie sweetener sucralose. Interestingly, a preclinical study provided evidence that MCH neurons account for the natural preference for sucrose over sucralose

and that such effect can be reversed by stimulating MCH neurons with light. This suggests that non calorie-sweeteners require additional stimuli to obtain the same

rewarding effect of sucrose.

receptors and ion channels. Type 1 taste receptors (T1Rs; sweet-
taste and umami receptors) and type 2 taste receptors (T2Rs;
bitter-taste receptors) are both G protein-coupled receptors
(174, 175). The activation of these receptors generates second
messengers, such as inositol trisphosphate and diacylglycerol,
leading to the activation of taste-transduction channels (176).
These metabolic pathways project to brain circuits, allowing the
appreciation of taste. Sweet-taste receptors are also expressed
outside of the oral cavity. They have been found throughout
the gastrointestinal tract, particularly in the enteroendocrine
L and K cells (177, 178). Besides the gastrointestinal tract,
sweet-taste receptors have also been found in pancreatic β-cells

(179), bile ducts (180), and lungs (181). In the gut, glucose
is absorbed through sodium-dependent glucose cotransporter-1
(SGLT-1) localized on the luminal membrane and the passive
glucose transporter 2 (GLUT2) on the basolateral membrane of
the enterocyte (182). Glucose binding to sweet-taste receptors
present on enteroendocrine cells leads to GLP-1 and peptide
YY (PYY) secretion from L-cells, promoting satiety (183). Since
both non-calorie and low-calorie sweeteners bind to sweet-taste
receptors present in the oral cavity and subsequently lead to
the sweet taste perception, it has been hypothesized that non-
calorie sweeteners and low-calorie sweeteners may activate the
same sweet-taste receptors expressed on enteroendocrine cells,
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promoting gut hormone secretion. In vitro, sucralose has been
shown to stimulate GLP-1 secretion from a human L-cell line
(NCI-H716 cells) (184) and to increase GLP-1 and glucose-
dependent insulinotropic peptide (GIP) release in a murine
enteroendocrine cell line (182) (Figure 2). However, these results
were not confirmed in vivo. Several studies showed no effect
of oral sucralose (185), aspartame, and acesulfame-K on GLP-
1, PYY, ghrelin, or GIP secretion (186). These results have been
confirmed also for sucralose administration before a solid meal,
which did not elicit any effects on GIP or GLP-1 release (187).
Nevertheless, other studies showed controversial results. In fact,
non-calorie sweeteners ingested through diet soda have been
shown to synergize with glucose to enhance GLP-1 release in
healthy subjects, even if it is unclear whether this effect was
due to the activation of sweet-taste receptors present on taste
buds of lingual papillae and/or enteroendocrine cells, or if it
was due to other mechanisms (188). Moreover, non-calorie
sweeteners (such as sucralose, acesulfame-K and saccharin) have

been shown to increase glucose absorption in the small intestine
by up-regulating SGLT1 expression in mice through the activity
of enteric neurons (182). Indeed, GLP-1 stimulates the release
of neuropeptides, which in turn bind to G protein-coupled
receptors (expressed on the basolateral membrane of enterocytes)
and induce SGLT1 expression (182). In vivo, these sweeteners
displayed the same effects by increasing GLUT2 expression at
the level of the apical membrane (189). Giving the ability of
non-calorie sweeteners to increase sugar absorption during a
meal, it is worth considering their potential implications in
terms of metabolic effects. The recent report that simultaneous
consumption of sucralose and maltodextrin-derived glucose
acutely disrupts glucose tolerance and insulin sensitivity (129)
may be a likely consequence of the increased intestinal glucose
absorption following the upregulated expression of SGLT1
and/or GLUT2.

In vitro studies demonstrated that sucralose, saccharin, and
acesulfame-K stimulate pancreatic β-cell insulin secretion in the

FIGURE 2 | Effects of non-calorie sweeteners in the gastrointestinal tract. Non-caloric sweeteners bind to sweet-taste receptors (T1Rs) on enteroendocrine L-cells,

promoting the synthesis of a series of second messengers, which ultimately results in GLP-1 release. GLP-1 stimulates the peripheral endings of afferent nerve

fibers—which send GLP-1-signal toward the central nervous system—and promote neuropeptide release by enteric neurons, thus triggering the up-regulation of

SGLT1 in enterocytes. Therefore, GLP-1 signaling ultimately results in increased intestinal glucose absorption. On the other hand, the role of circulating GLP-1 in

eliciting glucose-dependent insulin secretion by pancreatic β-cells is well-established. These molecular mechanisms have been demonstrated both in vitro and in vivo,

in preclinical studies, although they still need to be confirmed in clinical studies. GLP-1, glucagon-like peptide 1; SGLT1, sodium-dependent glucose cotransporter-1.

Frontiers in Endocrinology | www.frontiersin.org 8 July 2020 | Volume 11 | Article 444

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Moriconi et al. Low-Calorie and Non-Calorie Sweeteners

presence of glucose (179). The natural non-calorie sweetener
stevia is also able to enhance glucose-induced insulin release,
through inhibition of ATP-sensitive K-channels (190) and
stevioside has been shown to reduce plasma glucose levels inmice
(191), postprandial glucose and glucagon levels in subjects with
type 2 diabetes (192). Finally, mechanistics studies are needed
to better elucidate the effects of different sweeteners on gut
hormone-mediated glucose homeostasis in humans.

Figure 2 depicts some of the effects of non-calorie sweeteners
on enteroendocrine cells and gut hormones secretion, which have
mainly been inferred from in vitro and animal studies.

IMPACT OF SWEETENERS ON GUT
MICROBIOTA

It has been hypothesized that the relationship between sugar,
metabolic syndrome and its related disorders may be mediated,
at least in part, by changes in the gut microbiota (193, 194).
In particular, increased added sugar and novel sweeteners
consumption may alter the carbohydrate pools in the gut, thus
creating distinct environments that can favor adaptation and
enhance colonization and virulence of some endogenous and/or
exogenous pathogenic microbes (194).

Since most sugars and sweeteners are absorbed at the level of
the small intestine by sugar transporters, only up to 30% of these
compounds reach the large intestine (194). Therefore, the small
intestine environment is more enriched in sweeteners compared
to large intestine. Moreover, microbes in the small intestine have
a greater number of carbohydrate uptake and utilization genes
and transcripts compared to those in the large intestine (195).

Gut microbiota composition displays a remarkable spatial
heterogeneity across the gastrointestinal tract, with different
microbial communities creating distinct microenvironments at
different gut locations (a phenomenon also known as “gut
biogeography”) (196). Di Rienzi and Britton recently proposed
that the variation in microbial communities found along the
gastrointestinal tract can also depend on the variation in
sugars and sweeteners present at different gut locations (194).
Furthermore, changes in sugar and sweetener pool can lead
to adaptation of the gut microbiota involving transcriptional,
metabolic and compositional changes in gut microbes. These
changes allow for increase in abundance of microbes whose
niche and microenvironment are best filled. In addition, genetic
changes can also allow existing microbes to alter their niche
in order to better utilize the new nutrient pool (194). Suez
et al. demonstrated that saccharin-fed mice developed glucose
intolerance as a consequence of compositional and functional
alterations to the gut microbiota (197). Similarly, germ-free
mice receiving fecal transplantation from saccharin-fed animals
displayed glucose intolerance, suggesting that derangements
in glucose metabolism are mediated by saccharin-induced
alterations to the gut microbiota (197). Similar findings were
reproduced in healthy human subjects consuming saccharin for 1
week (197). Importantly, saccharin-fed mice showed a reduction
in Akkermansia muciniphila, a mucin-degrading bacteria with
probiotic properties associated with favorable metabolic effects

(197). Saccharin consumption has also been shown to affect
microbiota composition in rats; the growth of six bacterial strains
(three Lactobacillus species and three Escherichia coli strains)
was inhibited and the fermentation of glucose was decreased
(198, 199). Mice treated with saccharin (0.3 mg/ml) for 6 months
showed gut dysbiosis, which is broadly defined as any change in
the composition of resident commensal microbial communities
relative to the community found in healthy subjects (200), along
with an increased expression of pro-inflammatory inducible NO
synthase (iNOS) and TNF-α in liver (201).

Sousa et al. clearly demonstrated that a specific diet can alter
gut microbiota by changing the abundance of specific strains.
Of note, authors inoculated mice with an Escherichia coli strain
carrying a mutation disrupting the ability to consume galactitol
(a galactose-derived sugar alcohol) (202). Surprisingly, part of
the E. coli population regained galactitol metabolism, resulting in
the coexistence of two distinct strains within the gut microbiota
that could or not consume galactitol (galactitol-positive and
galactitol-negative strains, respectively) (202).

Apart from the role of sweeteners as nutrients for gut
microbiota, it is worth considering that some of these compounds
may exert direct toxict effects on specific microbes. For instance,
xylitol cannot be metabolized by oral bacteria (203) and is
therefore added to oral products or chewing-gums. Also, stevia
glycosides (stevioside and rebaudioside A) have been shown to
inhibit the growth of strains of Lactobacillus reuteri, a symbiotic
Lactobacillus species which inhabits the gastrointestinal tract of
mammals and is often administered as a probiotic additive in
healthy foods (204). However, inulin and fructans—contained
in the roots of stevia—favored the proliferation of bifidobacteria
and lactobacilli in a pre-clinical study (205). Stevia also showed a
bactericidal effect on enterohemorrhagic Escherichia coli (206).
Also, some sugar alcohols have been shown to promote an
increase in the number of beneficial gut microbes both in rats
and in healthy human volunteers (207, 208). Mice fed a high-fat
diet plus xylitol showed a reduced fecal content of Bacteroidetes
and Barnesiella, along with an increased abundance of Firmicutes
and Prevotella (209). Moreover, xylitol promoted a substantial
change in rodent fecal microbiota, decreasing gram-negative and
increasing gram-positive bacteria (210).

Of note, the ability of sweeteners to affect gut microbiota
composition may also have important immunological
implications. In this regard, a recent study conducted on
streptozotocin-induced diabetic mice and non-obese diabetic
(NOD) mice—which are both widely used as animal models
of human type 1 diabetes—has shown that trehalose, a natural
caloric disaccharide derived from a rodent intestinal nematode
and characterized by antioxidant properties (211), is able to affect
gut microbiota by increasing the abundance of Ruminococcus
spp. (212). Such change in intestinal microbiota composition
appears to account for the induction of CD8+ regulatory T cells,
which play a role in inhibiting the onset of diabetes and reducing
blood glucose levels in diabetic animals (212). In addition,
authors found that patients with type 1 diabetes, when compared
to healthy volunteers, had fewer CD8+ regulatory T cells, as
well as lower serum trehalose concentrations and fecal content
of Ruminococcus (212). These results suggest that trehalose may
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have a potential prophylactic and/or therapeutic role in humans
(e.g., use of trehalose and Ruminococcus strains as a prebiotic
and probiotic, respectively), as a tool to induce CD8+ regulatory
T cells in order to prevent the development of type 1 diabetes
and/or counteract the immune-mediated β-cell destruction
shortly after the onset of the disease.

Since sweeteners cross the placenta (213) and are found in
the maternal milk (214), there is the potential for a relationship
between prenatal exposure to different sweeteners and gut
microbiota composition later in life. Animal studies indicate
that acesulfame-K crosses the placenta during pregnancy and
can potentially lead to an increased sweet preference during
adulthood (215). On the other hand, prenatal sucralose exposure
does not affect fetal organogenesis (216), but increases the
risk for hematopoietic neoplasia in male mice (135) and
favors adipocyte differentation in cultured pre-adipocytes (217).
These results suggested that non-calorie sweeteners consumption
during pregnancy could impact on offspring adipose tissue
differentiation, promoting childhood obesity (217). Moreover,
exposure of pregnant mice to a mixture of acesulfame-K
and sucralose at different concentrations demonstrated that
non-calorie sweeteners were able to affect gut microbiota
composition in the offspring in a dose-dependent manner,
increasing Firmicutes content and reducing the amount of
beneficial species, including Akkermansia muciniphila (218).
In conclusion, early prenatal exposure to specific non-calorie
sweeteners could favor the occurrence of metabolic diseases
later in life, by inducing detrimental changes in the gut
microbiota composition.

The aforementioned findings support the notion that
sweetener consumption modifies the nutrient environment in
the gut and induces a series of functional changes in the gut
microbiota, which potentially result in transcriptional, metabolic,
compositional, and/or genetic adaptation by gut microbes. In
turn, microbial adaptation to sweeteners may affect host-microbe
interaction and influence the subsequent immune responses
(e.g., pro-inflammatory, anti-inflammatory, immune responses
that promote microbe survival or clearance) (194). However,
the mechanisms underlying the microbial adaptation to a given
sweetener are not fully understood yet. In particular, it is still
not clear if dietary sugars and sweeteners can also induce
changes in the host environment. The exact impact on the host
exerted by microbial metabolites derived from added sugar and
sweetener metabolism also needs to be clarified and addressed in
future studies.

HEALTH CONCERNS RELATED TO THE
USE OF SWEETENERS

To date, the European Union (EU) and EFSA approved the
use of 11 non-calorie sweeteners, namely: acesulfame-K (E-950),
advantame (E-969), aspartame (E-951), aspartame-acesulfame
salt (E-962), cyclamic acid and its sodium and calcium salts
(E-952), neohesperidin dihydrochalcone (E-959), neotame (E-
961), saccharin (E-954), stevia (E-960), sucralose (E-955), and
thaumatin (E-957). EU and EFSA confirmed that non-nutritive

and low-calorie sweeteners are safe for human health if used
within the ADI (219).

Amongst low-calorie sweeteners, EU approved the following
compounds: sorbitol and sorbitol syrup (E420), mannitol (E-
421), isomaltose (E-953), polyglycitol syrup (E-964), maltitol
and maltitol syrup (E-965), lactitol (E-966), xylitol (E-967), and
erythritol (E-968).

Unlike non-caloric sweeteners, polyols and low-calorie
sweeteners are classified as GRAS and ADI is not reported for
them (219). An international consensus statement on the use of
low- and non-calorie sweeteners has been signed in Lisbon in
July 2017 (220). The Consensus concluded that low- and non-
calorie sweeteners consumption is safe, as also supported by
WHO, FDA (221) and EFSA (222), and the dietary consumption
of low- and non-calorie sweeteners promotes dental health when
these compounds replace free sugars (223, 224). Therefore, the
Consensus encourages the education of consumers on the use of
products containing low- and non-calorie sweeteners, in order
to increase awareness of general population on their correct
use (225).

Finally, consumption of low- and non-calorie sweeteners
during pregnancy showed neutral effects on offspring health
and data obtained from animal studies were not confirmed in
humans (226).

Although more research is needed to fully assess the
effects of in utero exposure to sweeteners, current evidence
does not suggest adverse effects in pregnancy. Nevertheless, it
is recommended that sweeteners are consumed in moderate
amounts, adhering to the acceptable daily intake standards
established by regulatory agencies (213).

DISCUSSION

FDA has approved several types of sugar substitutes, considering
them as safe. Nonetheless, the American Heart Association and
the American Diabetes Association suggest to limit the use of
sweeteners due to the lack of strong evidence for their effects on
body weight and cardiometabolic risk factors in the long-term
period (227).

With regard to effects on gut microbiota, most of the
sweeteners affect bacterial gut composition, potentially inducing
dysbiosis. Among sweeteners, polyols seem to show a good safety
profile. Moreover, they are non-cariogenic, do not negatively
affect gut microbiota and are characterized by a very low-energy
value (45). Moreover, the potential favorable effects of polyols on
glucose homeostasis may suggest their use as a valid option in
subjects with type 2 diabetes and metabolic syndrome, although
further research is needed in this area.

In this context, a careful nutritional advice is essential for a
conscious use and for a correct transition, through the use of
sweeteners, from sweetened foods to sugar-free foods. The role
of nutrition specialists appears therefore crucial to recommend
a diet with a proper use of sweeteners, avoiding the risk of an
excessive use of these compounds.

Given the scarcity of data on sweetener safety in the long-
term period, it is important to carefully evaluate the use of
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these compounds particularly in selected patients, such as those
affected bymetabolic derangements. Indeed, different studies and
meta-analyses found an association between the consumption of
sweeteners and artificially sweetened beverages with increased
risk of overweight, obesity, metabolic syndrome and type 2
diabetes (86, 163, 228–230), thus highlighting the need for future
prospective studies aimed at evaluating the exact impact of
different types of sweeteners on human health from a metabolic
perspective. However, when consumed in moderate amounts,
sweeteners may be used as part of a nutritional rehabilitation
program aimed to limit daily consumption of refined sugars
(86, 163, 228–230).

Over the last decades several healthy dietary patterns have
been proposed to tackle the growing obesity epidemic. Dietary
approaches based on marked reduction of carbohydrate and
refined sugar consumption are emerging in clinical practice
and are highly debated. During the last few years, interest in
very low-calorie ketogenic diets (VLCKD) has gradually grown
due to their safety and their marked potential in inducing
weight loss (231). In this context, non-calorie sweeteners
represent a valuable tool for improvement of patient adherence
to a strict nutritional regimen and rehabilitation program.
The addition of non-calorie sweeteners to food replacements
allowed for a marked reduction in carbohydrate and sugar
content (<30 g/day, ≃13% of total energy intake), with
preservation of food palatability and diet satisfaction (231),
thereby avoiding craving and increase in appetite, which may
reduce the efficacy of a VLCKD. On the basis of the recent
findings on the effects of sucralose (129), the association of
non-calorie sweeteners to a very low-carbohydrate nutritional
regimen represents a valid approach to prevent the detrimental
metabolic effects on insulin sensitivity and the altered neural
response to sugars induced by an excessive carbohydrate
consumption (Figure 1).

CONCLUDING REMARKS

Dietary consumption of sweeteners has progressively increased
over the last decades in order to reduce the burden of
cardiovascular and metabolic diseases caused by modern western
diets, which are characterized by a high content in refined
and added sugars. Also, the introduction of sugar taxes in
several countries is likely to cause an even greater use of
these compounds.

Nonetheless, at present there is still scarce evidence to
establish conclusively whether the consumption of different
types of sweeteners (e.g., low-calorie sweeteners vs. non-calorie
sweeteners) can result in significant beneficial or detrimental
effects on energy balance, appetite, body weight, and/or
cardiometabolic risk factors in healthy subjects and patients with
metabolic diseases (particularly obesity and type 2 diabetes).
Indeed, the health impact of sweetener consumption, as well
as the potential health consequences resulting from switching
from one sweetener to another, still remain poorly understood.
Therefore, future prospective studies aimed to address short- and
long-term safety and efficacy of different types of sweeteners in

various clinical settings (e.g., obesity, type 2 diabetes, metabolic
syndrome) and in different age groups are needed.

Another area that warrants further investigation is the impact
of different types of sweeteners on gut microbiota. Emerging
evidence supports how different food components (including
sweeteners) can drive changes in the gut microbiota, resulting
in relevant implications for human health and disease (86,
194, 230, 232, 233). Mechanistic studies using gut organoids or
animal models will certainly help to better elucidate: (i) how
different types of sweeteners can reshape the gut microbiota,
(ii) the interactions between sweeteners/sweetener metabolites,
gut microbiota and host, and (iii) the consequences of these
interactions on host physiology and biological processes in
the short- and long-term period. Future studies will also be
helpful to evaluate which sweeteners are able to promote the
growth of beneficial or detrimental gut microbes, resulting in
potential human health benefits or harms. Additionally, clinical
studies evaluating the impact of different sweeteners on gut
microbiota composition will further help to fully address all these
unanswered questions regarding the sweetener-gut microbiota-
host triad.

Finally, the extent to which all the aforementioned sweetener-
induced changes at different levels (central nervous system
circuits, gut hormone secretion and gut microbiota) are clinically
relevant in terms of human health is still not clear. Genetic,
anthropometric and dietary differences may, at least in part,
account for the high interindividual variability in the response
to different types of sweeteners (233). Future studies based
on epidemiological approaches combined with tools used in
precision medicine may help to better establish the subset of
individuals who are more likely to receive benefit or harm from
sweetener consumption (233).
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