Abnormal function of NMDA receptor has been suggested to be correlated with the pathogenesis of Parkinson's disease (PD) as well as with the development of l-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia. Here we show that NMDA receptor NR2 subunits display specific alterations of their subcellular distribution in striata from unilateral 6-hydroxydopamine-lesioned, L-DOPA-treated dyskinetic, and L-DOPA-treated nondyskinetic rats. Dyskinetic animals have significantly higher levels of NR2A subunit in the postsynaptic compartment than all other experimental groups, whereas NR2B subunit shows a significant reduction in both dopamine-denervated and dyskinetic rats. These events are paralleled by profound modifications of NMDA receptor NR2B subunit association with interacting elements, i.e., members of the membrane-associated guanylate kinase (MAGUK) protein family postsynaptic density-95, synapse-associated protein-97 and synapse-associated protein-102. Treatment of nondyskinetic animals with a synthetic peptide (TAT2B) able to affect NR2B binding to MAGUK proteins as well as synaptic localization of this subunit in nondyskinetic rats was sufficient to induce a shift of treated rats toward a dyskinetic motor behavior. These data indicate abnormal NR2B redistribution between synaptic and extrasynaptic membranes as an important molecular disturbance of the glutamatergic synapse involved in L-DOPA-induced dyskinesia.

A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia.

Picconi B;Ghiglieri V;
2006-01-01

Abstract

Abnormal function of NMDA receptor has been suggested to be correlated with the pathogenesis of Parkinson's disease (PD) as well as with the development of l-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia. Here we show that NMDA receptor NR2 subunits display specific alterations of their subcellular distribution in striata from unilateral 6-hydroxydopamine-lesioned, L-DOPA-treated dyskinetic, and L-DOPA-treated nondyskinetic rats. Dyskinetic animals have significantly higher levels of NR2A subunit in the postsynaptic compartment than all other experimental groups, whereas NR2B subunit shows a significant reduction in both dopamine-denervated and dyskinetic rats. These events are paralleled by profound modifications of NMDA receptor NR2B subunit association with interacting elements, i.e., members of the membrane-associated guanylate kinase (MAGUK) protein family postsynaptic density-95, synapse-associated protein-97 and synapse-associated protein-102. Treatment of nondyskinetic animals with a synthetic peptide (TAT2B) able to affect NR2B binding to MAGUK proteins as well as synaptic localization of this subunit in nondyskinetic rats was sufficient to induce a shift of treated rats toward a dyskinetic motor behavior. These data indicate abnormal NR2B redistribution between synaptic and extrasynaptic membranes as an important molecular disturbance of the glutamatergic synapse involved in L-DOPA-induced dyskinesia.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12078/1200
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 228
  • ???jsp.display-item.citation.isi??? 220
social impact